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1 Introduction: Configuration Spaces

Many problems in robotics involve a configuration space. Configuration space or C-space of a robot or a

system of robots is the abstract space of possible states or configurations that the system can attain. Thus

each point in the C-space corresponds to a possible state of the robot(s) in the real environment. Robotics

problems, especially planning problems, typically involve navigation of the system through the C-space

space in order to achieve certain tasks or objectives. This translates to finding a 1-dimensional curve (a

trajectory) in the C-space that the system needs to follow. Typically C-spaces are smooth manifolds and any

curve on it is a possible trajectory for the system. However, presence of kinematic and dynamic constraints

may require that the tangent at any point on the trajectory lies within a specific subset of the tangent space

at the point of the C-space. Furthermore, in presence of a metric in the C-space or a more general measure

for 1-dimensional curves in the space, one can talk about optimality of the trajectory.

Typically the C-space of a system can be parametrized by the different state variables corresponding

to the different degrees of freedom. For example, the configuration space of a single point mobile robot

navigating in a unbounded 2-dimensional flat plane with obstacles is simply R2 − O, where O represents

the set of points on the plane that make up the obstacles (Figure 1(a)). Similarly, the configuration space

of a planar robot arm with two links and no joint angle limits (Figure 1(b)) is a torus, T = S1 × S1, each

point on which correspond to an unique pair of joint angles θ1, θ2 (Figure 1(c)).
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(a) The configuration space of a point
robot navigating on a plane with obsta-
cles o1 and o2 is R2 − (o1 ∪ o2)
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(b) A 2-link robotic arm is described by
the state variables θ1 and θ2.
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(c) The configuration space of a 2-link
robotic arm is the 2-torus.

Figure 1: Examples of simple configuration spaces.

One can generalize the notion of C-space for a system with multiple robots. For example, if C = R2−O
is the configuration space of a point robot as described in Figure 1(a), the presence of n robots in the
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environment will result in a joint configuration space for the system of n robots described by C = C ×
C × · · · × C − ∆ = Cn − ∆, where we take the product of n copies of the C-spaces corresponding to each

robot, and remove from it the diagonal that represents collision of the robots (i.e., ∆ = {[p1,p2, · · · ,pn] ∈
Cn | pi = pj for some i 6= j} ). Clearly, the joint configuration space is a 2n dimensional manifold.

As a final example, let us consider a unicycle model of the point robot [2], which means, in addition

to the position (x, y), the robot has an orientation (θ). Thus the configuration space of the robot is now

(R2 −O)× S1 (a subset of SE(2)).

2 Point-set Topology

Set theory is the study of collections of objects. In many cases that collection can be infinite and uncountable.

For example, one may talk about the set of all the points on the surface of a sphere. However, set theory does

little in establishing relationship among the objects in a set. For example, if we consider the set consisting of

the points on a sphere, it’s just a collection of points, each of which is distinct and there is no way of telling

which point is “connected” to which other point in the set to give the sphere its familiar shape. That’s

where topology comes to the rescue. A topology consists of a set, along with the additional information on

“grouping”/“collection” of the objects inside the set. Such “groupings” are called open subsets of the set.

Definition 2.1 (Topology [4]). A topology on a set X is a collection, T , of subsets of X, containing both

X and ∅, and closed under the operations of intersection and union. Together, the tuple (X,T ) is called a

topological space, and the elements of T are called open sets of the topological space.

Often, when there is a standard topology, by convention, for a space X, one can refer to the topological

space simply as X. One of the most important consequences of defining topology is that we now have the

notion of continuity.

Definition 2.2 (Continuous Functions Between Topological Spaces [4]). Given two topological spaces,

(X1, T1) and (X2, T2), consider a map f : X1 → X2. For any subset U ⊆ X2, define f−1(U) = {x ∈
X1 | f(x) ∈ U} (note that if f−1 : Y → X exists, this definition simply generalizes it to subsets of Y ). Then

f is said to be continuous if for each open set V ∈ T2, the set f−1(V ) is in T1 (i.e. an open set).

Note that for continuity, f need not map open sets to open sets. That is, for W ∈ T1, its image f(W )

need not be in T2. When a continuous function is also injective, it is called an embedding (embedding of X

in Y ).

Starting with these basic definitions, one can make assertions on certain properties of the topological

space, construct one topological space from another, and establish relationships between them. This is the

primary affair of the field of point-set topology. However, one can do little algebra or actual computation

on a topological space using this. That’s where the field of algebraic topology gets introduced.

Before we proceed to algebraic topology, we state a few definitions that follow from basic point-set

topology.
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(a) Homeomorphic spaces (both equivalent to S1). The
apparent difference between the two spaces is due to their
embedding in R2. The spaces themselves are topologically
equivalent.
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(b) Continuous functions, fi : S1 → (R2 −O1∪O2), which
are also embeddings (injective). f1 can be continuously
deformed to f2 (they are homotopic), but not to f3 (f1
and f3 are not homotopic).

Figure 2: Homeomorphic spaces and homotopic functions.

2.1 Homeomorphism, Homotopy, Deformation Retract and Homotopy Equiv-

alence

The first fundamental equivalence relation among topological spaces is that of homeomorphism. Topo-

logically, two topological spaces are homeomorphic if they essentially are the same topological space (with,

possibly, ‘renaming’/‘relabeling’ of the items in one of the set and its topology to obtain the other). In

presence of an embedding, informally, two spaces are homeomorphic if one can be continuously deformed

into the other without causing cuts or tears in the space (i.e. open sets remain open). This is popularly

exemplified using a donut and a coffee cup with a handle, and how, to a topologist, they are one and the

same. Figure 2(a) shows a more modest example of homeomorphism.

Definition 2.3 (Homeomorphism [4], Fig. 2(a)). Two topological spaces X and Y are homeomorphic if

there exists a bijective function f : X → Y (which implies the inverse, f−1 : Y → X, exists and is bijective)

such that both f and f−1 are continuous. f (which may not be unique) is called a homeomorphism between

the spaces.

A fundamental equivalence relation among continuous functions defined between two fixed topological

spaces is homotopy. Informally, two functions are homotopic if one can be continuously changed into another.

Definition 2.4 (Homotopy [3], Fig. 2(b)). Two continuous function between the same topological spaces,

f1, f2 : X → Y , are called homotopic if there exists a continuous function F : X × [0, 1]→ Y (where, [0, 1]

is assumed to have the standard Euclidean topology, and ‘×’ induces the product topology to the product

space) such that F (x, 0) = f1(x) and F (x, 1) = f2(x), for all x ∈ X. Concisely we express this relationship

as f1 ' f2. The function F (which may not be unique) is call a homotopy between f1 and f2. Informally,

we say that f1 can be homotoped to f2 and vise-versa.

The idea of deformation retract is that given a topological space X, and a subspace A (a subset with

subspace topology [4]), we ask the question whether or not the space X may be continuously ‘shrunk’ and

‘deformed’ to A without causing any ‘cut’ or ‘tear’. If it can, we call A a deformation retract of X (Figure 3).

Consider the identity map idX : X → X (Figure 3(a)). Now start ‘shrinking’ X gradually to ‘collapse’ on
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(a) t = 0.0 (b) t = 0.3 (c) t = 0.7 (d) t = 1.0

Figure 3: A deformation retraction of X to A ⊆ X. For each t, the green area is F (X, t).
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Figure 4: A cylinder (hollow, without lids) and a solid torus are homotopy equivalent. Each of them is
homotopy equivalent to a circle.

to A. At every step of the shrinking process what we have is an embedding of X into itself such that the

image of the embedding is the ‘shrunk’ version of X at that step (Figure 3(b,c)). Eventually we ‘shrink’ X

to A (Figure 3(d)).

Definition 2.5 (Deformation Retract [3], Fig. 3). A subspace A (with subspace topology) is called a

deformation retract of a topological space X if there exists a continuous function F : X × [0, 1] → X such

that

• F (x, 0) = x, ∀x ∈ X (i.e. F (·, 0) ≡ idX is the identity map on X),

• F (a, t) = a, ∀a ∈ A, t ∈ [0, 1], and,

• F (x, 1) ∈ A, ∀x ∈ X.

F (which may not be unique) is called a deformation retraction from X to A. Since A is a subspace of X,

we can interpret F as a homotopy between the identity map idX and the map f1 ≡ F (·, 1) whose image is

in A.

It is important to note that f1 ≡ F (·, 1) : X → X is homotopic to the identity map on X. Had A not been

given beforehand, and instead, we were given a function f1 : X → X that is homotopic to idX , the image

of f1 would clearly be a deformation retract of X.

The fact that A needs to be a subspace of X in the definition of deformation retract essentially implies

that there is an embedding i : A ↪→ X, called the inclusion. However A, as an independent topological

space, should not require an embedding in X to be described (e.g A in Figure 3 is topologically just a circle

S1). We still should be able to describe a similar relationship between them. That’s where a generalization

iv



of a deformation retract, called homotopy equivalence, comes into the picture.

The idea of homotopy equivalence is that instead of explicitly mentioning a subspace A of X, we look

at the continuous functions from X to itself via a second space Y (the final image is of course a subspace

of X). We then ask if this combination map is homotopic to the identity map on X. We do the same thing

with the role of X and Y reversed. If the answer is ‘yes’ in both the cases, the spaces X and Y are said to

be homotopy equivalents.

Definition 2.6 (Homotopy Equivalence [3], Fig. 4). Two topological spaces X and Y are called homotopy

equivalent if there exists continuous functions f : X → Y and g : Y → X such that g ◦ f is homotopic to

the identity map idX , and f ◦ g is homotopic to the identity map idY . The function f (and likewise g) is

called a homotopy equivalence. X and Y are said to have same homotopy type, and informally we say one

can be homotoped to the other.

If A is a deformation retract of X, then they are of course homotopy equivalents. However the converse

is not always true. Out of many ways of determining if two spaces X and Y are homotopy equivalents,

one approach is to check if each of them deformation retracts to a subspace that is topologically equivalent

(homeomorphic). Then they are homotopy equivalent (Figure 4). The other, more formal, approach is

to check if there exists a larger space with embeddings of X and Y into it, such that this larger space

deformation retracts to both X and Y .

2.2 Contractible Space

Definition 2.7 (Contractible Space [3]). A topological space X is called contractible if the identity map

on it, idX , is homotopic to a constant map (a function taking every points in X to a fixed point x0 ∈ X).

The intuition behind contractibility is that the space can be pulled (contracted) continuously towards

a point inside it. It is important to note that a contractible space need not be finite. For example, RD is

contractible for any finite D. This is because, for any point p ∈ RD one can construct a map fp : [0, 1]→ RD

so that fp(0) = p, fp(0) = 0 (the origin), and F (p, t) = fp(t) is continuous.
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