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1 Motivation for Algebraic Topology

Algebraic topology imparts certain algebraic (primarily group) structures to a topological space, and allows

interpretation of the structure of the topological space by analysis of the algebraic structures. In this section

we will motivate some basic ideas behind algebraic topology without going into too much technical details.

Instead, we will use some simple illustrations to explain them.

The first step in imparting an algebraic structure to a topological space is to describe the space in

terms of a sequence of groups (in simple cases, vector spaces, which are themselves groups with additional

structures), and maps between them. This algebraic object will be called a chain complex. While it is

not necessary to discretize/triangulate a topological space to describe a chain complex on it (as we will

shortly do), for ease of understanding we make this simplifying discretization. Each discrete element in this

discritization is called a simplex (Figure 1) – the vertices will be called 0-simplices, the edges 1-simplices,

the triangles 2-simplices, tetrahedrons 3-simplices, etc. Formally, a n-simplex on a topological space, X, is

a map from a standard n-simplex [4] to X. However, most often, we will informally refer to the image of a

n-simplex as the n-simplex itself.
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(a) A 2-chain.
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(b) The boundary of the area (a 1-
cycle).

(c) The boundary of the boundary is
empty.

Figure 1: Boundary operator acting on a chain twice gives an empty chain.

†Adapted from [1]



1.1 Boundary Operator

Consider a patch of area on the plane that is discretized into simplices as in Figure 1. Out of all the

2-simplices (triangles), we pick a few – ones marked by green color as in Figure 1(a). We simply call those

triangles A1, A2, · · · , A5 (note that by Ai we do not mean the ‘area’, but the whole triangle as an abstract

object/set). Thus the region they cover is denoted by A1+A2+· · ·+A5 (where, for now, we can interpret ‘+’

as an union). Figure 1(b) shows the boundary of the chosen area and is likewise represented by
∑7

i=1 li (each

1-simplex or edge is arbitrarily labeled li). However, if we now look at the boundary of
∑7

i=1 li, it is clearly

empty (in general, such boundary could have been made up of 0-simplices or vertices). This last observation

is a key motivation behind constructing a chain complex. This observation extends to higher dimensions

and any topological space as well. For example, in a 3 dimensional space discretized into tetrahedrons, if

we pick a few of those tetrahedrons (3-simplices) to define a volume, and take the boundary of that volume

(which will be a closed surface), this boundary will itself have an empty boundary. Thus, boundary of a

boundary is always empty. In a naive notation, if ∂2(A) represents the boundary of an area A, and ∂1(l)

represents the boundary of a curve l, what we just stated can be summarized as ∂2(
∑5

j=1Aj) =
∑7

i=1 li,

and ∂1(
∑7

i=1 li) = 0 = ∂1 ◦ ∂2(
∑5

j=1Aj). In general, ∂n ◦ ∂n+1 = 0.
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(a) In the boundary of A2 we have al-
ready labeled the edge l12.

A3l13

l14

-l12

(b) The boundary of A3 needs to have
−l12 as an edge. We can re-label it to,
say, l21, but then we will need to equate
it to −l12 to ensure distributivity of ∂2.
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l14
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(c) Upon adding the boundaries of A2

and A3, the edges l12 and −l12 cancel
out, and we obtain the boundary of A2+
A3.

Figure 2: Distributivity of Boundary Operator.

1.2 Distributivity of Boundary Operator and Orientation

One of the properties that we would like the boundary operator, ∂n, to have is distributivity. That is, for

example, we would like to be able to write ∂2(Ai+Aj) = ∂2(Ai)+∂2(Aj). This will let us assert that boundary

of boundary is empty, purely from algebraic conditions, without looking at a picture: ∂1 ◦ ∂2(
∑

iAi) =∑
i ∂1 ◦ ∂2(Ai) =

∑
i 0 = 0 (since boundary of boundary of an individual triangle is always empty). This

would enable us develop a linear algebra. This requires that we assign some sign (directionality) to each

of li. Consider a single 2-simplex, A2, as shown in Figure 2(a). Its boundary is l11 + l15 + l12. Now

consider the 2-simplex A3 (Figure 2(b)). Since A2 and A3 share the common edge, l12, which will lie

inside A2 + A3, we need to make sure that somehow this edge gets canceled out when we add ∂2(A2) to
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∂2(A3) to obtain ∂2(A2 + A3) (Figure 2(c)). This is attained by giving a directionality of every segment

li, represented as ±li, and noting that li + (−li) = 0. There is nothing special about the dimension 1 of

the 1-simplices, and we can in fact assign directionality to simplices of every dimension (vertices, edges,

triangles, tertahedrons, etc.). The definition of direction has to be such that it admits distributivity of the

boundary operators ∂n. For example, if one considers −A2 in Figure 2(a), in order to be consistent with the

fact that ∂2(A2 + (−A2)) = ∂2(A2) + ∂2(−A2) = 0, we need to have the boundary of −A2 (i.e. ∂2(−A2))

as (−l11) + (−l15) + (−l12), that is the original line segments with reverse orientation.

1.3 Group Construction

By now it is easy to see a group structure emerging. For example, for every line segment li we have defined

an inverse element, −li so that they add up to 0, the identity element. Also, we have developed the intuition

of how the binary operator ‘+’ works between li and lj for i 6= j or lj = −li. All that we now need to do to

make the set of possible combinations of the 1-simplices (e.g. li1 + li2 + · · · is an arbitrary combination –

called a 1-chain) an algebraic group is to close it under the operation of addition. Earlier we have related

li + lj with taking union of the line segments li and lj . However, if we write li + li, an interpretation in

terms of union, will simply mean li. This will not be consistent with our attempt to define a group. Thus,

we define a new element 2li := li + li. This can be interpreted as taking the line segment two times on top

of itself (similar to disjoint union). However it is to be kept in mind that this is absolutely an algebraic

construction. Following along similar lines, we can define 2li, 3li, 4li, · · · , and the corresponding inverses

−2li,−3li,−4li, · · · . In general nli := li + li + · · · (n times), and −mlj := (−lj) + (−lj) + · · · (m times).

Thus we have constructed an abelian group that is freely generated by l1, l2, l3, · · · . We represent this

group by C1(X) (where, X is the topological space which we discretized to create the simplices), where the

subscript 1 refers to the dimension of the simplices. Of course we can do similar treatment for simplices of

all dimensions (e.g. Figure 3). The group for the n-dimensional simplices is written as Cn(X).

1.4 Coefficients

One further generalization of the said group construction is that with arbitrary coefficients. The idea can be

described as follows: So far we have constructed elements like 2li, 3li, · · · (i.e. li with integer coefficients).

However, very often, one may come across problems where non-integer coefficients arise very naturally.

One typical inspiration comes from an electrical network that can be modeled as a simplicial 1-complex

(the coefficients on the 1-simplices represent the currents passing through them, and the coefficients on the

0-simplices represent the voltage at the nodes). Then, because of Kirchhoff’s law, the sum of the incoming

currents at any node is equal to the sum of the outgoing currents at the node. Consequently, any closed

loop of current represents a 1-cycle in the complex [3]. However, note that now we need to define coefficients

over R since the currents can assume any real number (e.g. 2.56 li). Moreover, due to the superposition

theorem for electrical circuits [2], one can add currents, and hence add the 1-cycles. For such additions we

naturally borrow the definition of additions from the real numbers, R (which is a group under ‘+’ operator

with 0 as identity element), and the additions happen simply on the coefficients of li. In fact we can

generalize the coefficients to arbitrary algebraic structures (like groups, rings, fields, etc.). Thus, if G is an

algebraic structure and an abelian group under an addition operation, ‘+’, then we define C1(X;G) (as a

generalization of C1(X)) to be abelian group in which every element is represented by an ordered set of
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A3

2A2

-A5

(a) A graphical representation of A3 +
2A2 + (−A5) ∈ C2(X). Colors rep-
resent the integer coefficients – green
positive, red negative, darker is higher.
Note how the coefficient for the other
2-simplices is 0 represented by light
blue. This type of arbitrary com-
bination is called a chain (a 2-chain
in this case). Thus, one can inter-
pret this as a order set of coefficients,
[0, 2, 1, 0,−1, 0, 0, 0, · · · ], for the corre-
sponding 2-simplices.

l13

l14

2l11
2l15

l12

-l4

-l7-l9

(b) The boundary of the 2-chain shown
in (a). The boundary is l13 + l14 +
l12 + 2l11 + 2l15 − l4 − l9 − l7. Note
that we no more use an ‘arrow’ to rep-
resent the direction of the 1-simplices.
Since we can now have arbitrary inte-
ger coefficients, color representation of
the coefficients is the preferred way of
visualization. Green indicates positive,
red indicates negative. Note how a −l12
from ∂2(A3) adds to 2l12 from ∂(A2) to
give the l12 in the figure.

lA

(c) However, one can set lA = l13 +
l14 + l12 + 2l11 + 2l15 − l4 − l9 − l7, and
considered to be a generating element
of C1(X) (by change of basis). Then
we will be using light green to represent
lA with coefficient 1. Then, for exam-
ple, lA + l12 will be represented by this
same figure as above, except with the
edge corresponding to l12 being marked
with darker green.

Figure 3: A 2-chain and its boundary, with coefficients (which includes direction information) represented
by colors.

coefficients [g1, g2, g3, · · · ], gi ∈ G (these are the coefficient of l1, l2, l3, · · · ), that inherits the operator ‘+’

from G by the element-wise operation [g1, g2, g3, · · · ] + [g′1, g
′
2, g
′
3, · · · ] = [g1 + g′1, g2 + g′2, g3 + g′3, · · · ]. It

is to be noted that the addition operator is a chosen preferred operator of G. The inheritance of other

operators from G to C1(X;G) are subject to independent definitions. Of course, once again, this is general

for arbitrary dimensions, and for n-dimensional simplices we have the algebraic structures Cn(X;G).

The boundary operator, which was distributive, is extended to being linear (informally. More precisely

it is a group homomorphism) when we have the coefficients (this is mostly by definition than anything else

– by extending the definition of boundary operator to chains with coefficients). Thus, from our previous

example, if A = gaA2 + gbA3 ∈ C2(X;G) for ga, gb ∈ G, we have ∂2(A) = ga∂2(A2) + gb∂2(A3) = ga(l11 +

l15 + l12) + gb(l13− l12 + l14) = ga(l11 + l15) + gb(l13 + l14) + (ga− gb)l12. Substituting ga = gb = 1 for G = Z,

we obtain our previous result. Also, by linearity, ∂1◦∂2(A) = ga∂1◦∂2(A2) + gb∂1◦∂2(A3) = ga0 + gb0 = 0.

In general ∂n ◦ ∂n+1 = 0 due to linearity and the fact that for a (n+ 1)-simplex σn+1, ∂n◦∂n+1σ
n+1 = 0.

More precisely, the boundary operator is a group homomorphism.

1.5 Vector Space

One can very well compare Cn(X) to a vector space (especially when the coefficients are in field R). For

example, in Figure 3, each li may be thought to be an basis vector forming a basis set in a N -dimensional

vector space (where N is the total number of ‘edges’ or 1-simplices in the discretization of X). Thus, any

linear combination of the basis vectors, σ = a1l1+a2l2+· · ·+aN lN , will represent some 1-chain (Figure 3(b)).
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Then, Cn(X) is very much like a vector space spanned by those basis vectors. One can even talk about

change of basis (Figure 3(c)). In particular, if the coefficients are in a field, then Cn(X) is indeed a vector

space. If elements from this vector space can be represented by coefficient vectors [a1, a2, a3, · · · , aN ]T

(as described earlier, and assuming there are N numbers of n-simplices in the representation of X), and

the elements of the vector space Cn−1(X) is represented by coefficient vectors [b1, b2, b3, · · · , bM ]T (where

we assume that there are M numbers of (n − 1)-simplices in the finitely discretized representation of X),

then the boundary operator ∂n may be represented by a M × N matrix. Thus, when a N -dimensional

coefficient vector representing a vector from from Cn(X) is left-multiplied by this matrix, we obtain a M -

dimensional coefficient vector representing a vector in Cn−1(X). Then the kernel and image of ∂n have

simple interpretations borrowing the corresponding concepts from linear algebra.

2 Formal Description of Homology

Once we have established the motivation behind defining chain complexes, we can formally define it in the

most general way as follows.

Definition 2.1 (Chain Complex [4], Fig. 4). A chain complex is a sequence of abelian groups,

· · · , C3, C2, C1, C0, C−1, · · · , along with homomorphisms ∂n : Cn → Cn−1 such that ∂n−1 ◦ ∂n = 0

for all n = · · · , 3, 2, 1, 0,−1, · · · . It is commonly represented using the following diagram:

· · · −−→ Cn+3
∂n+3−−−−→ Cn+2

∂n+2−−−−→ Cn+1
∂n+1−−−−→ Cn

∂n−−−→ Cn−1
∂n−1−−−−→ · · ·

with, ∂n−1 ◦ ∂n = 0, ∀n.

Note that in general, chain complexes need not be related to any topological space, as in the independent

definition stated above. It is simply a sequence of abelian groups C• with the operators ∂• (by subscript

‘•’ we informally mean the collection for all n). Such independent studies of chain complex without any

reference to topology is known as homological algebra and is a field of study by its own right. Algebraic

topology borrows significant amount of tools from that field.

In algebraic topology, these groups Cn obviously corresponds to the groups freely generated by the n-

simplices on the topological space X, and are written as Cn(X). Chain complexes generated by a finite

number of simplices as described earlier are known as simplicial complex. However there are other, and more

general forms of chain complex that one can define on a topological space – ∆-complex, singular complex,

cellular complex, cubical complex, etc.

Since ∂n ◦ ∂n+1 = 0, we have (see Figure 4)

Img(∂n+1) ⊆ Ker(∂n) ⊆ Cn(X)

Definition 2.2 (Subgroup of Boundaries [4]). Bn(X) := Img(∂n+1) ⊆ Cn(X) is called the group of n-

boundaries (a subgroup of Cn), and is the image of the whole of Cn+1(X) under the action of ∂n+1.

Elements in Bn(X) (called n-boundaries) are n-chains, each of which are boundaries of some (n+ 1)-chains

in X (Figure 5(c)).

Definition 2.3 (Subgroup of Cycles [4]). Zn(X) := Ker(∂n) ⊆ Cn(X) is called the group of n-cycles (a

subgroup of Cn), and is the kernel of ∂n (i.e. all the elements in Cn that maps to the identity element
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. . . . . .

Cn Cn-1Cn+1
∂n+1 ∂n . . .. . .

0  ∈ Cn-1Img(∂n+1) Ker(∂n)
∂nCn+1

∂n+1 ⊆

Figure 4: A schematic representation of a chain complex (see [3]). It consists of the sequence of groups, C•,
along with homomorphisms ∂•, with the property that ∂n ◦ ∂n+1(σ) = 0 for any σ ∈ Cn+1.

in Cn−1(X) under the action of ∂n). Elements in Zn(X) (called n-cycles) are n-chains that have empty

boundary under the action of ∂n (Figure 5(b)). Of course all n-boundaries are n-cycles as well, but the

converse is not true.

It is easy to see that both Zn(X) and Bn(X) are closed under addition and also the inverse of elements in

each of them belong to the sets themselves. Thus they are subgroups.

As discussed earlier, an element σ ∈ Cn(X) is an arbitrary linear combination of n-simplices on X

(Figure 5(a)). However, a subset of those will be such that the boundary operator, ∂n, acts on them to give

zero (i.e. they are in Ker(∂n)). These are elements z ∈ Zn(X) ⊆ Cn(X) (Figure 5(b)). Furthermore, some

out of those are such that they themselves are boundaries of some one higher dimensional chain (i.e. they

are in Img(∂n+1)). Those are elements b ∈ Bn(X) ⊆ Zn(X) (Figure 5(c)).

Since, by definition, for any b ∈ Bn(X) we can find a ω ∈ Cn+1(X) such that ∂n(b) = ∂n ◦ ∂n+1(ω) = 0

(by definition of chain complex), we have Bn(X) a subgroup of Zn(X). Thus, one can now construct the

following quotient group,

Definition 2.4 (Homology Groups [4]). We define the nth homology group of X as ,

Hn(X) = Zn(X) / Bn(X)

The intuitive description of Hn(X) is as follows: We look at two n-cycles z1, z2 ∈ Zn(X) (Figure 6).

If their difference is boundary of some one-dimensional higher chain (i.e. z1 − z2 ∈ Bn(X)), we say that

they belong to the same homology class or are homologous (Figure 6(a) and 6(d)), otherwise we say that

they are in different homology classes (Figure 6(b) and 6(c)). Thus, we have several different homology

classes of n-cycles. Hn(X) essentially is the set of all those homology classes. This can be seen clearly by

the definition of group quotient. Each element of Hn(X) is a partition of Zn(X) such within each partitions

(i.e. a homology class) two elements z1 and z1 can be related as z1 = z1 + b for some b ∈ Bn(X).

2.1 Group Structure of Hn(X)

For a given z ∈ Zn(X), we write [z] ∈ Hn(X) for the homology class of Z. The addition operator of Hn(X)

is inherited from Zn(X) in a rather natural way – we define [z1] + [z2] = [z1 + z2], where the first addition

is the one in Hn(X) (one we are defining), while the addition on the right is well-known for Zn(X). Also,
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X

σ

(a) A 1-chain. The boundary of this
chain is not empty since the curves have
end-points (0-chains). This is an arbi-
trary element of C1(X).

X

z

(b) A 1-chain without a boundary is a
1-cycle. This is an element of Z1(X).

X

A

b

(c) A chain which is boundary of a 2-
chain (the one marked by A). This is
an element of B1(X).

Figure 5: Illustration of chain, cycle and boundary. The topological space X is shown in blue. The figures
do not show a discretization explicitly, however one can think it to be discretized into very small simplices
(much like what we had in Figure 2 or 3) in order to accommodate almost arbitrary-shaped chains. Every
1-chain shown in this figure are made of 1-simplices, being labeled for the first time, with coefficients as 1
(indicated by the color light green – refer to Figure 3(b)).

the identity element (or ‘zero’) of Hn(X) is the homology class of the boundaries (elements of BN (X)).

This can be observed as follows: If z1 and z1 belong to the same homology class (i.e. z1 = z1 + b for some

b ∈ Bn(X)), then by definition, [z1] = [z1] =⇒ [z1 + b] = [z1] =⇒ [z1] + [b] = [z1] =⇒ [b] = 0.

Resorting briefly to our earlier comparison of Cn(X) with a vector space, we can see that Zn(X) is like

a vector subspace (a vector space by its own right). Thus, Bn(X) is a subspace of Zn(X). Then Hn(X)

may be thought of as the vector subspace of Zn(X) which is orthogonal to Bn(X) such that Hn(X) and

Bn(X) spans the whole of Zn(X).

2.2 Relative Homology

Given C•(X), a chain complex on X, and a subspace S of X (S and X are together written as (X,S)

and is called a pair of spaces), one can construct the subcomplex C•(S), where each Cn(S) is a subgroup

of Cn(X) freely generated by the n-simplices that fall inside S. Then one can talk about quotient groups

Cn(X)/Cn(S). These quotient groups are written as Cn(X,S) for brevity. Thus, there is a quotient map

j : Cn(X) → Cn(X,S) such that given any n-chain σ ∈ Cn(X), if we trivialize the part of the chain

that lies inside S, we obtain j(σ) ∈ Cn(X,S). It is analogous to taking projection of σ on the subspace

orthogonal to the subspace Cn(S). One can then extend the boundary operator ∂n quite naturally to define

∂n : Cn(X,S)→ Cn−1(X,S). Then it is not difficult to see that C•(X,S) form a chain complex,

· · · −−→ Cn+1(X,S)
∂n+1−−−−→ Cn(X,S)

∂n−−−→ Cn−1(X,S)
∂n−1−−−−→ · · ·

with ∂n−1 ◦∂n = 0, ∀n. The image of a n-chain σ ∈ Cn(X) under the action of j is typically called a relative

chain and is an element of Cn(X,S). We can compute homology groups for the above chain complex. Those

are called relative homology groups, and are represented by Hn(X,S). It is to be noted that these, in general,

are not same as Hn(X)/Hn(S). Any σ ∈ Cn(X) lying inside completely S will be a trivial relative chain
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X

z1

z2 A

(a) z1 and z2 are 1-cycles that are in the same
homology class. This is because z1 and −z2 (z2
with reversed orientation) forms the boundary of a
2-chain, A, (one consisting of all the 2-simplices in
the annular region with unit coefficients). That is,
z1 − z2 = ∂2(A) ∈ B1(X)

X

z'1

z2

(b) z′1 and z2 are 1-cycles that are in different ho-
mology classes. This is because one cannot find a
2-cycle A such that z1 − z2 = ∂2(A) ∈ Bn(X)

X

2z1

z2

A

(c) 2z1 (where z1 is the same as in (a)) and z2 are
1-cycles that are in different homology classes. The
coefficient 2 for z1 (which may be thought of as 2
copies of z1 placed on top of one another) is indicated
by the darker color (refer to Figure 3(b)).

X

2z1

2A' A1 A2 A3

z'2

(d) 2z1 and z′2 are 1-cycles that are in same homol-
ogy classes. This is because we can write 2z1 − z2 =
∂2(2A′ −A1 −A2 −A3) ∈ B1(X).

Figure 6: Cycles in same and different homology classes. Discretization and color coding of coefficients
similar to before (Figure 5).

j(σ) = 0 ∈ Cn(X,S) and is a relative boundary (Figure 7(c)). And any n-chain σ ∈ Cn(X) with boundary

lying completely inside S will be a relative n-cycle j(σ) ∈ Zn(X,S) (Figure 7(b)).
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X

S

(a) Relative chains. The 1-chains in
X have some boundary (end point, 0-
chain) lying outside S.

X

S

(b) Relative cycles. The 1-chains in X
have boundaries lying inside S. Thus in
the relative form (i.e. their image under
quotient map j), they have no bound-
ary. Hence these are relative cycles.

X

S

(c) Relative boundaries. For these 1-
chains in X, either the whole of it lies
inside S, thus making it trivial, or they
are boundaries of some relative 2-chain.

Figure 7: Relative chains on C1(X,S), and chains that are relative cycles and relative boundaries.

3 Properties of Homology

In this section we will mostly state some results and explain their implications, but without detailed proofs.

The reader may refer to [4] for the proofs and detailed discussion.

3.1 Interpretation of Homology Groups

Each element of the nth homology group, Hn(X), as we just saw, represents a class of n-cycles that differ

by n-boundaries. There is however an even more intuitive and useful interpretation of the homology groups

– the rank (or informally, the dimensionality) of the group tells us about the nth Betti number (informally,

the number of (n+ 1)-dimensional ‘holes’ when n > 0, and number of connected components when n = 0)

of the topological space X. This is not difficult to see from the example in Figure 6. One can see that

corresponding to the two holes in the space X, there are two distinct types of cycles that are not boundary

(called non-trivial cycles) – one that goes around the right hole (Figure 8(a)), and other that goes around

the left hole (Figure 8(b)). These are the generators of H1(X). In fact a direct computation of H1(X)

reveals that it is isomorphic to the group Z2 (direct sum of two copies of the integers’ group, which is a

group under addition) – thus, the first Betti number of the space, b1, is 2. The homology class of any other

cycle in the space can be expressed as a linear combination of these two homology classes (Figure 8(c)).

3.2 Indifference to Method of Construction of Chain Complex

The homology groups of a topological space are indifferent to the method of construction of the chain

complex used to compute the homology groups. The intuitive idea is that given a topological space X, one

can create a chain complex in many different ways on it. Even a finite simplicial discretization (e.g. Figure 3)

can be created in infinite variety. Besides, there are other types of chain complexes that can be constructed

on a topological space (like ∆-complex, singular complex, cellular complex, cubical complex – see [4] for

details). Although these create vastly different chain complexes, {C•(X), ∂•}, the homology groups Hn(X)

computed using any of them will however be the same as long as we stick to the same coefficient group. This
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X

za

(a) [za] is a generator of H1(X).

X

zb

(b) [zb] is another generator of H1(X).

X

zpzq

(c) z = azp + bzq ∈ Z1(X) is an arbi-
trary 1-cycle. Its homology class how-
ever is [z] = a[zp] + b[zq ] = a[za] +
b[zb], i.e. can be expressed as a linear
combination of the generating homology
classes.

Figure 8: The rank of homology group gives the Betti number. The homology class of an arbitrary cycle
can be expressed as the linear combination of the generators of the homology group.

may be intuitive from the discussion in the previous paragraph, where we saw that the homology groups

provide information about the Betti numbers of X – a topological invariant of X. However a rigorous proof

of this fact is quite elaborate and involved [4].

3.3 Functoriality

Homology is a functor from the category of topological spaces to the category of groups [4]. The simple

meaning of this statement is that if there are two topological spaces X and Y , and if there is a continuous

function f : X → Y , then there exists a group homomorphism f∗:n : Hn(X) → Hn(Y ), ∀n such that for

a cycle z ∈ Zn(X) the following holds: f∗:n([z]X) = [f(z)]Y . Here, by f(z) we mean the image of z in Y

under the action of f (which will still be a cycle), and by the subscripts X and Y of the square brackets we

mean the homology class of the cycle in the respective topological space (i.e. elements of Hn(X) or Hn(Y )

respectively). We say that the map f induces the homomorphisms f∗ between the homology groups (where,

by the subscript ‘∗’ we mean the collection of all the induced homomorphisms · · · , f∗:2, f∗:1, f∗:0). Also, due

to functionality, if there are maps f : X → Y and g : Y → Z, then (g ◦ f)∗ = g∗ ◦ f∗.

3.4 Homotopy Invariance

If two spaces X and Y are homotopy equivalent (Definition ??), then their homology groups are isomorphic

(i.e. they essentially are the same groups). In notation, Hn(X) u Hn(Y ), ∀n. This is an important result

in algebraic topology.

However, if we know that the nth homology groups of two spaces are isomorphic (i.e. Hn(X) u Hn(Y )),

it is often nontrivial to find a map f : X → Y that induces the isomorphism. For example we can have

Hn(X) u Hn(Y ) u Zp, but if f : X → Y is such that every point on X is mapped to a single point

y0 ∈ Y (i.e. a constant map), then the map f∗:n is a zero map (which is still a homomorphism, but

not an isomorphism). On the other hand, if f is a homotopy equivalence between X and Y , then f∗ are

isomorphisms.
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3.5 Long Exact Sequence (LES)

A long exact sequence is a special type of chain complex consisting of sequence of abelian groups, A•, and

chain maps between the groups, p•, with the property that Img(pn+1) = Ker(pn), ∀n (instead of just being

subset as it was the case for chain complex). Thus long exact sequences are obviously chain complexes as

well. The sequence can be finite or infinite as in the case of chain complex.

An important result in algebraic topology is that given a pair of spaces, (X,S), the following sequence

is a LES:

· · · −−→ Hn(S)
i∗−−→ Hn(X)

j∗−−→ Hn(X,S)
∂∗−−−→ Hn−1(S)

i∗−−→ Hn−1(X)
j∗−−→ · · ·

where, by the subscripts ‘∗’ we mean the corresponding induced homomorphism to be used for appropriate

value of n. i∗ is the homomorphism induced (due to functoriality of homology) by the inclusion map

i : S ↪→ X. j∗ is induced by the quotient map at the chain level (as opposed to the topological space)

j : Cn(X)→ Cn(X)/Cn(S). And ∂∗ is a homomorphism that maps the homology class of relative cycles in

(X,S) to the homology class of its boundary in S. A more detailed discussion on properties of LES can be

found in pp. 114 of [4].
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