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The Set of Natural Numbers and the Addition Operation
The set of of Natural Numbers, N, by itself, contains the elements 1,2,3, . . . . As a
set, these elements are nothing more than symbols. But when we define the addition
operation (in particular, the operation of adding ‘1’ to any natural number), we
establish a relationship between these elements. Thus, 1+1 = 2, 2+1 = 3, 3+1 =
4, and so on. The addition operation is also naturally defined between any two
natural numbers: for example, 5+ 3 = 8, can be interpreted as repetition of the
operation of ‘+1’ on 5 three times: 5 + 3 = 5 + (2 + 1) = 5 + ((1 + 1) + 1) =
((5+1)+1)+1. Thus, the natural number, as we know it, is not just the set N, but
the set along with the defined operation ‘+’. Formally, it is said that the operation
of addition, ‘+’, gives the set of natural numbers a structure. Thus the natural
numbers is really defined by the pair of entities, (N,+).

The operation of subtraction is a natural consequence of the operation of addi-
tion: The operation of subtracting ‘1’ from a natural number, n, is defined as the
operation that gives answer to the question “What is the natural number, to which
when we add ‘1’, do we get n?” The operation is written as “n− 1”. In general
we have, like for addition, n−m = ((. . .((n− 1)− 1) . . .)− 1) (where there are m
counts of open and close brackets).

Quite obviously subtraction is called the inverse of the operation of addition, and
they go hand-in-hand. When we refer to the natural numbers (N,+), the existence
of the operator ‘−’, the inverse of ‘+’, is implied by default.

However, there is an unsettling fact about (N,+): While we can apply the ‘+1’
(and in fact‘+m’) operation on any natural number and get a natural number, we
cannot apply its inverse, ‘−1’ (respectively ‘−m’), on any natural number and still
get something in the set N (Figure 1(a)). For example, ‘−1’ operated on 1 ∈ N is
not defined within the natural numbers. Likewise,−8 operated on 5∈N, i.e., 5−8,
is not defined within the natural numbers.

In a relatively formal language, we say that the natural numbers is incomplete
with respect to the ‘+’ (addition) operation since the set of natural numbers is not
closed (i.e., not self-contained) under the inverse of the addition operation, i.e., ‘−’.
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Figure 1: Natural number and integers.

This leads us to construct a set that is complete under addition by introducing the
“missing” elements into the set of natural numbers, thus giving us the set of integers.

Integers and Modular Arithmetic
The set of integers, Z, contains the natural numbers, as well as the ones that would
make the operation of addition, along with subtraction, closed in the set (Fig-
ure 1(b)). Thus, Z = {. . . ,−3,−2,−1,0,1,2, . . .}, along with the addition opera-
tion, gives it a structure (establishes relationships between its elements). As before,
we write (Z,+) to denote the set along with the addition operation (and its inverse).

A few important properties of (Z,+) (some of which were missing in (N,+))
are as follows:

i. There exists an element, 0 ∈ Z, called the additive identity, such that for any
a ∈ Z, a+0 = 0+a = a (existence of identity element),

ii. For every element a ∈ Z, there exists an element −a ∈ Z (called the additive
inverse of a) such that a+(−a) = 0 (existence inverse elements),

iii. For any a,b ∈ Z, the element a+b ∈ Z (closure under addition),

The property ‘ii.’ encodes the operation of subtraction, where instead of talking
about inverse of the ‘+’ operation, we present the same concept in terms of inverse
of the elements themselves. These properties, along with one more (the property
that a+(b+ c) = (a+b)+ c, which is called associativity), gives (Z,+) a specific
type of structure known as a group.

One can also define multiplication on the integers using the addition operation
quite naturally: m×n = m+m+ · · ·m (n counts of m summed up), for n,m∈Z,n≥
0. If n is negative, we simply add −n counts of m, and then finally flip the sign of
the number. This is how we define multiplication on integers. The definition of
divisibility in integers is actually given in terms of multiplication (and not division,
since we have not yet defined what division is):
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Divisibility: An integer p ∈ Z is said to be divisible by n ∈ Z (or pbn,
where the symbol “b” reads out as “is divisible by”) if there exists a
m ∈ Z such that n×m = p.

Summary: The integers are defined by the pair (Z,+). 0 ∈ Z is called
the additive identity for integers. For every a ∈ Z, −a is called the
additive inverse of a such that a+ (−a) = 0. Multiplication can be
defined in terms of a sequence of additions, and divisibility is defined
in terms of multiplication.

However, there is a different structure that one can impart to a finite set of n el-
ements, {0,1,2, · · · ,n−1} (the elements of which, once again, as a set, are nothing
but n different symbols), such that all the properties of a group still hold – thus let-
ting us define addition, additive identity and additive inverse on this finite set. The
key difference between this structure and the Natural numbers or the Integers is that
instead of arranging the elements on a line, as we did in Figure 1, we arrange them
on a circle (Figure 2(a)). Then the operation of ‘+1’ is defined to be one that takes
us one step counterclockwise to the next number, while its inverse operation, ‘−1’
takes us one step clockwise to the previous number. This system behaves almost
like the usual addition and subtraction, except that when we add 1 to n−1, we get
back to 0, and when we subtract 1 from zero, we get to n−1. Operations of ‘+m’
or ‘−m’, as before, can be considered as m consecutive operations of ‘+1’ or ‘−1’
respectively.

This kind of arithmetic is called a modular arithmetic (or clock arithmetic). The
finite set of elements is written as Zn = {0,1,2, · · · ,n−1}. This set, along with the
described addition operation, describes the modular arithmetic (in particular, “mod-
n arithmetic”), and is referred to using the pair (Zn,+). Note that this operation
‘+’ is fundamentally different from the ‘+’ operation in integers, (Z,+). It may
have been appropriate to use a different symbol for the addition operator acting on
elements of Zn (say, ‘⊕’ instead of ‘+), but it’s convenient to use the same symbol,
‘+’, whenever the context is clear.

As an example, if n = 4, then the set of elements in the mod-4 arithmetic is
Z4 = {0,1,2,3} (see Figure 2(b)). In this modular arithmetic, one would have
3+ 1 = 0. But that equation would look odd and it is not obvious that we mean
addition in mod-4 arithmetic. So the usual way of writing equations in a modular
arithmetic is as follows:

3+1≡ 0 (mod 4)

The “ mod 4” in brackets and the equivalent sign (instead of ‘=’) indicates that we
are doing a modular arithmetic. Likewise, one has 3+7≡ 2 (mod 4), since if one
goes 7 steps counterclockwise on the mod-4 system, starting at 3, one gets to 2.

3



. . . . . .

0
1

2

3

4

n-1

n-2

. .
 .

+1

-1

+1

-1

+1

-1

+1

-1

+1

-1

. .
 .

. .
 .

. .
 .

-3

+4

(a) (Zn,+).

0

1

+1

2

3

+1

+1

+1
+1

+1

+1 (1)(2)

(3)
(4)

(5)(6)

(7)

(b) (Z4,+). Note how 3+7≡ 2 (mod 4)

Figure 2: Modular arithmetic.

So, in general, how to figure out what is a+ b in a mod-n arithmetic? The
answer to that lies in the observation that starting at 0 on the circle, we get back to 0
every time we move n steps clockwise or counterclockwise. Thus, if we consider a
general integer, say c∈Z, the corresponding number in Zn is the remainder that one
obtains when c is divided by n. The phrase “remainder that one obtains when c is
divided by n” is often itself written as “c mod n”. Thus, in our previous example,
3+7 = 10 ∈ Z. Thus, to obtain the value of 3+7, or 10, in mod-4, we compute 10
mod 4 = 2 (i.e., the remainder that one obtains when one divides 10 by 4). A few
more examples:

i. 98+5≡ 3 (mod 100)

ii. 55+41≡ 16 (mod 20) [since, 55+44 = 96, and 96 mod 20 = 16]

A few important remarks:

1. The following statements are equivalent (saying the same thing in different
ways):

a≡ b (mod n)

a mod n = b mod n
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The first statement is saying that a and b are the same numbers in mod-n
arithmetic (e.g., from our previous example 10≡ 2 (mod 4)), while the later
is explicitly describing what it means: That is, the remainders that one obtain
when one divdes either a or b by n are the same (e.g., in our earlier example,
10 mod 4 = 2 = 2 mod 4).

2. Due to the division algorithm, for any a,n ∈ Z, one can write a as

a = qn+ r

for some q,r ∈Z with 0≤ r < n. Here, q is the quotient and r is the remainder
that one obtains when one divides a by n. Thus, a mod n = r. For example,
since 38 = 5×7+3 we have 38 mod 7 = 3.

3. If abn (i.e., a is divisible by n), then by definition, a = qn for some q ∈Z, and
thus, a mod n = 0 (i.e., the remainder that one obtains when one divides a by
n is zero).

4. In the system (Zn,+), the additive identity is still 0, which corresponds to
taking no step either clockwise or anticlockwise. For any a ∈ Zn, its additive
inverse is (n−a) ∈ Zn, since a+(n−a) = n≡ 0 (mod n).

5. It’s often convenient to remember the following:

(a+b) mod n = ((a mod n)+(b mod n)) mod n

An example problem using the above basic principles:

Q: Compute (5+312) mod 29.

Solution: The most important thing to do in problems as this is to be
able to make use of the division algorithm by expressing the quantity
(5+312) as 29q+ r. The problematic term in this question is the 312.
So we simply express 31 as 29+2. Thus we have,

5+312 = 5+(29+2)2

= 5+292 +4×29+4
= 29(29+4)+9
= 29q+9

where q = 33.

Thus, (5+312) mod 29 = (29×33+9) mod 29 = 9.
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Practice problems:

1. Compute (252 +323) mod 29.

2. Compute 15! mod 7.

3. If 12≡ 7 (mod n), what can be a possible value of n?

Prime Numbers
Definition of Prime Numbers: Prime numbers are natural numbers
that have exactly two positive divisors: 1 and itself.

Example of the first few prime numbers: 2,3,5,7,11,13,17,19,23,29,31,37,41, . . . .
1 is not a prime number since its two positive divisors, 1 and itself, are not distinct.

Prime Counting Function: The prime counting function, π , is defined
as follows: π(n) is equal to the number of prime numbers less than or
equal to n, for some n ∈ N.

Evaluation of the prime counting function on the first 20 natural numbers is listed
in the table below:
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n π(n) The prime numbers less than or equal to n
1 0
2 1 2
3 2 2, 3
4 2 2, 3
5 3 2, 3, 5
6 3 2, 3, 5
7 4 2, 3, 5, 7
8 4 2, 3, 5, 7
9 4 2, 3, 5, 7
10 4 2, 3, 5, 7
11 5 2, 3, 5, 7, 11
12 5 2, 3, 5, 7, 11
13 6 2, 3, 5, 7, 11, 13
14 6 2, 3, 5, 7, 11, 13
15 6 2, 3, 5, 7, 11, 13
16 6 2, 3, 5, 7, 11, 13
17 7 2, 3, 5, 7, 11, 13, 17
18 7 2, 3, 5, 7, 11, 13, 17
19 8 2, 3, 5, 7, 11, 13, 17, 19
20 8 2, 3, 5, 7, 11, 13, 17, 19

Note how π(n) remains unchanged between 3 & 4, between 5 & 6, between 7 &
10, between 11 & 12, between 13 & 16, etc. Of course as the value of n increases,
the value of π(n) increases as well. But as n becomes larger and larger, the rate at
which π(n) increases become smaller and smaller. That means the intervals of n in
which π(n) remain unchanged, on an average, become longer and longer. This is
illustrated in the plot of π(n) against n in Figure 3.

So the question that we will investigate next is, “for large values of n, how
does π(n) increase as we increase n?” The answer is given by the Prime Number
Theorem:

Prime Number Theorem: For large values of n, the following holds:

π(n)' n
ln(n)

where, ln is the natural logarithm function.

That means, as n becomes very large, the number of prime numbers less than or
equal to n is approximately n

ln(n) . This of course will give incorrect results for

small values of n. But let’s consider an example of large n, say, n = 109. For
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Figure 3: π(n) plotted against n, for n from 1 to 2000. Note how the curve “bends”
downwards as the value of n increases.

this value, ln(109)' 20.723. Thus, by the prime number theorem, we should have
π(109)' 109

20.723 ' 48,300,000. This number is in fact quite close to the actual value
of π(109) = 50,847,534 in relative terms (the error is about 50,847,534−48,300,000

50,847,534 '
5% of the actual value). As we make n even higher, this relative error becomes even
smaller.

Historic note: This theorem was first conjectured by C. F. Gauss in early 1800’s,
and later proven near the end of the same century due to the effort of multiple
mathematicians.

Practice problems:

1. If π(1000) = 168 and π(100) = 25, how many 3-digit prime numbers
are there?

2. If ln(4.9× 108) ' 20, estimate the number of prime numbers less than
4.9×108.

We will discuss a few other interesting theorems involving prime numbers:

Fermat’s Little Theorem: If p is a prime number and a ∈ Z is an
integer that is not divisible by p, then the following is always true:

ap−1 ≡ 1 (mod p)
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Or in other words, ap−1 mod p = 1.

It is easy to test this theorem for small values of a and p: Let’s say p = 5 be the
prime number o choice, and a = 6 be the integer which is not divisible by p. Then
ap−1 = 64 = 1296. Now, if we divide 1296 by p = 5, the remainder that we get is
1. Thus, 64 ≡ 1 (mod 5), just as Fermat’s little theorem predicted. However, one
may now use this theorem to arbitrary prime numbers, p, and numbers n that are not
divisible by p. For example, one can ask what is 2112 mod 13? Choosing p = 13,
a = 21 and applying the Fermat’s little theorem, one can immediately say that 2112

mod 13 = 1.

Practice problems:

1. Compute: 2410 mod 11, 496 mod 7, 1122 mod 23.

2. Compute: 1224 mod 7, (1618 +212) mod 19.

Coprime Numbers

Two integers are called coprime or relatively prime if they do not have any common
factor other than 1. Thus, 15 and 28 are coprime integers (relative to each other),
since upon factorization, 15 = 3×5 and 28 = 2×2×7, do not have any common
factor other than 1. On the other hand, 12= 2×2×3 and 15= 3×5 are not coprime
since they have the common factor of ‘3’.

Chinese Remainder Theorem: Suppose n1,n2, · · · ,nk are pairwise co-
prime integers and a1,a2, · · · ,ak are any integers. Then the following
set of k equations in the variable x has a simultaneous integer solution.

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

x ≡ a3 (mod n3)

· · ·
x ≡ ak (mod nk)

For example, given n1 = 3,n2 = 4,n3 = 5, which are pairwise coprime, and a1 =
2,a2 = 3,a3 = 1, the following set of equations

x ≡ 2 (mod 3)
x ≡ 3 (mod 4)
x ≡ 1 (mod 5)

has a solution of x = 11 (Exercise: Verify that’s indeed true.)
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Open Problems and General Discussions on Prime Numbers

The Twin Prime Conjecture: Two prime numbers are called twin primes if their
difference is 2. For example, 2 and 3 are twin primes, 3 and 5 are twin primes,
17 and 19 are twin primes, etc. Interestingly, even if we go higher and higher
in the natural number, we keep finding such twin prime numbers. However it is
not known if there are infinitely many twin prime pairs. That is, whether or not
there exists a number, however large, above which there does not exist any twin
primes. People have used computers to search for twin primes, and have found
very large twin primes. For example, as of 2009, the largest known twin primes
are 65516468355× 2333333− 1 and 65516468355× 2333333 + 1. However a proof
or disproof for the claim that there exits arbitrarily large twin primes (and thus
infinitely many of them) is still an unsolved problem in mathematics, and is known
as the twin prime conjecture.

Goldbach’s conjecture: Consider an even natural number, say 12. One can
write it as sum of two prime numbers, 12 = 5+7. A few more examples are 18 =
7+ 11 = 5+ 13, 76 = 73+ 3 = 29+ 47, 100 = 3+ 97 = 11+ 89 = 17+ 83 =
29+ 71 = 41+ 59 = 47+ 53, etc. Thus the natural question is, “can every even
natural number be written as sum two prime numbers?” Although this question
is deceptively simple, finding a definitive “yes” or “no” answer to it has remained
illusive. As of 2013, computers have been used to check even natural numbers up to
4×1017, and each and every of them can be written as sum of two prime numbers
at least in one way. But weather every arbitrarily large even natural number can be
written as sum of two prime numbers is an unanswered question in mathematics,
and the claim that it can be, is known as the Goldbach’s conjecture.

Cryptography: Refer to class lecture notes for details.

Rational Numbers
In the previous section we saw how we went from N to Z in order to be able to
complete a structure, namely a group structure, which involved closure of the set
under the operation of ‘+’ (addition) and its inverse.

Recall that on the integers, (Z,+), one can define multiplication using addition
quite naturally: By definition, m× n = m+m+ · · ·m (n counts of m summed up),
for n,m ∈ Z,n≥ 0. If n is negative, we simply add −n counts of m, and then finally
flip the sign of the number.

Now, just as we defined subtraction as the inverse operation of multiplication,
division can be defined as the inverse operation of multiplication: The answer to
the question “What is the integer, to which when we multiply ‘n’, do we get p?” is
defined as p

n . For example, with p = 15 and n = 5, the integer 15
5 = 3 is the integer
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to which when we multiply 5 we get 15. However, for arbitrary pairs of integers,
the answer to this question may not lie in the integers. For example, what is the
integer, to which when we multiply ‘n = 7’, do we get p = 18? There is no answer
to this question in the set of integers. Thus, we insert the “missing” numbers to
create a new set of numbers, such that it will be closed under division, the inverse
operation of multiplication. This is the set of rational numbers:

Rational Numbers: In set builder notation, the set of rational numbers
is defined as,

Q=

{
p
q

∣∣∣ p,q ∈ Z
}

The rational numbers are equipped with two operations, ‘+’ (addition)
and ‘×’ (multiplication). So one may write the rational numbers as
(Q,+,×).

As with the integers, the rational numbers are closed under addition (for every u,v∈
Q there exists u+v ∈Q), has an additive identity element (0 = 0

1 ), and has additive
inverses (for every w ∈Q, there exists −w ∈Q such that w+(−w) = 0). However,
in addition, it also has the following properties:

a. There exists an element, 1 ∈ Q, called the multiplicative identity, such that
for any a ∈Q, a×1 = 1×a = a (multiplicative identity element),

b. For every element a ∈Q, a 6= 0 (where 0 is the additive identity), there exists
an element 1

a ∈Q (called the multiplicative inverse of a) such that a× 1
a = 1

(existence multiplicative inverse elements),

c. For any a,b ∈Q, the element a×b ∈Q (closure under multiplication),

As before, the property ‘b.’ above encodes the operation of division, where instead
of talking about inverse of the ‘×’ operation, we present the same concept in terms
of multiplicative inverse of the elements themselves.

Addition, subtraction, multiplication and division of rational numbers can be
summarized in the following formulae: For p,q,u,v ∈ Z,

1. p
q +

u
v = pv+qu

qv

2. p
q −

u
v = pv−qu

qv

3. p
q ×

u
v = pu

qv

4. p
q/

u
v = pv

qu

11



Rational Numbers As Ratio of Coprime Integers

A rational number does not have an unique representation as ratio of two integers.
For a rational number p

q ∈ Q, where p,q ∈ Z, it may be possible to cancel the
common factors of p and q to obtain a reduced form of the same rational number.
For example, 12

18 = 2×2×3
2×3×3 = 2

3 , where in the last step we divided the numerator
and the denominator by the factor 2× 3 = 6, that is common to 12 and 18. Note
that in the final form, the numerator, 2, and the denominator, 3, do not have any
more common factors, and thus are coprime integers. As a matter of fact, given any
rational number as ratio of two integers, one can always “cancel out” the common
factors from the numerator and the denominator so that the final form of the number
is expressed as ratio of two coprime integers. This form of a rational number we
will refer to as its reduced form.

Irrational Numbers
Irrational numbers are those which cannot be expressed as ratio of two integers (i.e.,
not rational). For example, the solution to the equation x2− 2 = 0, as we know, is
x =±

√
2. It can be shown that this number is not a rational number:

Proposition:
√

2 is an irrational number.

Proof: We prove this by contradiction. If possible, supposed
√

2 is
rational. Thus, we can write it as a ratio of two coprime integers,

√
2 =

p
q , where p,q ∈ Z are coprime (recall that any rational number can be
written as a ratio of two coprime integers). Thus,

√
2 =

p
q

⇒ 2 =
p2

q2

⇒ p2 = 2 q2

Thus p2 is even (divisible by 2). p being an integer, and 2 being not
a square integer, the only way p2 can be divisible by 2 is if p itself is
divisible by 2. Thus, p = 2a, for some a ∈ Z. Plugging this into the
equation above,

(2a)2 = 2 q2

⇒ q2 = 2 a2

Once again, by similar argument as before, the only way q2 can be even
is if q itself is even. Thus, q = 2b.
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Thus we have shown that both p and q have to be divisible by 2. This is
in direct contradiction to our initial assumption that p and q are coprime
integers. Thus we have ended up with a contradiction! Hence

√
2

cannot be written as a ratio of two coprime integers, and hence it’s
irrational.

Practice problems:

1. Using the method of contradiction, prove that the following numbers are
irrational: 3

√
4, 5
√

7, 2
√

8.

2. Which of the following numbers are irrational and which are rational:√
4
9 ,
√

5 , 2+ 3
√

3 , 1
2 −

3
√

8 ? Explain your answers.

Algebraic Numbers

The set of (real) algebraic number, A, consist of numbers that are (real) solutions to
polynomial equations with rational coefficients.

Note that rational numbers are algebraic as well since p
q is a solution to the

polynomial equation qx− p = 0.
Refer to class lecture notes for details.

Transcendental Numbers

The real numbers that are not algebraic numbers (e.g., π , e, ππ , etc.). One cannot
write down a pilynomial equation with rational coefficients whose solution is a
transcendental numbers.

Refer to class lecture notes for details.

Complex Numbers
Imaginary Numbers

The set of real algebraic numbers, A, consists of the real numbers that are solution
to polynomial equations with rational coefficients.
Examples:

i.
√

2 ∈ A since it is a solution to the polynomial equation x2−2 = 0.

ii. −2+
√

3∈A since it is a solution to the polynomial equation x2+4x+1 = 0.
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However, there are many polynomial equations whose solutions cannot be found
anywhere in the set of real numbers. For example, consider the simple polynomial
equation x2 + 2 = 0. A solution to this, x, should be such that x2 = −2. However
the square of any real number cannot be negative. So we introduce new numbers in
our number system:

We take the simplest of such polynomial equations, x2 +1 = 0, and for
a solution to this equation define a new number: i =

√
−1.

This new number, i, that we just defined is called imaginary due to historic
reasons. However, in the light of modern mathematics this is no more “imaginary”
than the rational numbers, real algebraic numbers or the transcendental numbers —
each of which were introduced in our number system in order to complete some
structure, operation or properties on the number system. For example, when we
introduced the rationals, we saw that some ratio of integers, such as 6

3 ,
−21

7 , etc. do
lie in the set of integers themselves. But the ratios like 3

2 ,
7
9 ,

20
6 , etc do not find a

place in Z. So we introduced new numbers in the system – every number of the
form p

q for p,q ∈ Z – and called this new set of numbers rational numbers, Q.
Likewise, now we introduce new numbers for solution to polynomial equations that
clearly do not have solution on the real line, R.

Since it is clear that this number, i, does not lie on R, we place it somewhere
outside the number line. It is also clear that if a solution to the equation of x2+1= 0
is written as i, then there will be polynomial equations whose solutions will be
multiples of i. For example, for the polynomial equation x2 + 4 = 0, a solution is

x=
√
−4=

√
4
√
−1= 2i. As another example, a solution to x2+ 2

9 is x=−
√
−2

9 =

−
√

2
3 i. These multiples of i are called “imaginary numbers”, although as mentioned

earlier, there is absolutely nothing “imaginary” about them. It’s just a name given
to these numbers.

0 1 2-3 -2 -1 3

0 i 2i-3i -2i -1i 3i

(real line)

(“imaginary” line)

Figure 4: The real and imaginary number lines.

Thus, now we have two number lines in our number system: one is our usual
real number line, R, and the other is the imaginary line containing the multiples of
i (Figure 4).
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Complex numbers

However, the next thing that we observe is that the solutions to some polynomial
equations come in form of a sum of a real number and an imaginary number. For
example, consider the polynomial equation x2−2x+3 = 0, which can be re-written
as (x− 1)2 + 2 = 0. Thus, a solution to this equation is given by x− 1 =

√
−2 =√

2i ⇒ x = 1+
√

2i. Thus, the number 1+
√

2i is a solution to a polynomial
equation. In general, one can get arbitrary numbers of the form a+bi, where a,b ∈
R, as solutions to polynomial equations. These numbers are essentially made up
of two real numbers, a and b (the later being the coefficient of i), and are called
complex numbers.

We emphasize once again that complex numbers are numbers that are made up
of nothing but pairs of real numbers, (a,b), written in the peculiar form a+ bi.
Thus complex numbers an be represented as points on a plane, which by definition,
is R×R=R2, consisting pairs of real numbers as its elements (recall the definition
of a Cartesian product). This plane of the complex numbers is called the complex
plane, C, and just as we mentioned, this is nothing but R2. So the complex number
a+ bi can be drawn as point on the complex plane with a projection of a on the
horizontal axis (called the real axis) and a projection of b on the vertical axis (called
the imaginary axis). This is illustrated in Figure 5.

0 1 2-3 -2 -1 3

i

2i

-3i

-2i

-i

3i

(real axis)

(“imaginary” axis)

2.2 + 1.5 i

2.2

1.5

Figure 5: The complex plane.
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The Fundamental Theorem of Algebra

So far we have defined i =
√
−1 (a solution to the polynomial equation x2 +1 = 0)

and saw that solution to some polynomial equations can be written in the form of
a+ ib, where (a,b) ∈ R2. But what is so special about

√
−1? What about the

polynomial equation x4 + 1 = 0? A solution to this equation seems to be 4
√
−1.

Do we have to define another new number, say j = 4
√
−1, for a solution to this

polynomial?
It turns out that we need not define any more new numbers for writing solution

to polynomial equations with any real coefficients. It can in fact be shown that a
solution to the aforesaid equation, x4 +1 = 0, is actually x = 1√

2
+ 1√

2
i (a complex

number). We can verify that very easily: If x = 1√
2
+ 1√

2
i, then,

x2 =

(
1√
2
+

1√
2

i
)2

=

(
1√
2

)2

+2
(

1√
2

)(
1√
2

i
)
+

(
1√
2

i
)2

=
1
2
+2

1
2

i− 1
2
= i

Thus we have, x4 = (x2)2 = i2 =−1. This means 1√
2
+ 1√

2
i is a solution to the poly-

nomial equation x4 +1 = 0. In fact any polynomial equation with real or complex
coefficients have solutions that are complex numbers (i.e. are of the form a+ bi).
This is formally known under the name of The Fundamental Theorem of Algebra.

The Fundamental Theorem of Algebra (semi-formal statement): Ev-
ery polynomial equation in x, with real or complex coefficients, have
one or more solutions which are complex numbers.

Complex Algebra

In this section we will describe the rules for addition, multiplication and division of
complex numbers:

Addition: (a+bi)+(p+qi) = (a+ p)+(b+q)i.
Example: (2+3i)+(1−1.4i) = 3+1.6i.

Subtraction: (a+bi)− (p+qi) = (a− p)+(b−q)i.
Example: (2+3i)− (1−1.4i) = 1+4.4i.

Multiplication: (a+ bi)(p+ qi) = ap+ bpi+ aqi+(bi)(qi) = (ap− bq)+ (bp+
aq)i.
Example: (2+3i)(1−1.4i) = 6.2+0.2i.

Multiplication: a+bi
p+qi =

(a+bi)(p−qi)
(p+qi)(p−qi) =

(ap+bq)+(bp−aq)i
p2+q2 .

Example: 2+3i
1−2i =

−5+7i
5 =−1+ 7

5 i.
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Summary: The following relationships are important:

N ⊆ Z ⊆ Q ⊆ A ⊆ R ⊆ C

Note that A refers to only the real algebraic numbers (in general, one
can talk about complex algebraic numbers as well). The Transcendental
numbers is thus the set R−A.

Cardinality
The way we compare cardinality of two infinite sets is by establishing one-to-one
correspondence between the elements of the sets. If such a correspondence exists,
then they have the same cardinality.

Cardinality of countably infinite sets is ℵ0. Thus, |N| = |Z| = ℵ0. Refer to
class lecture notes for details.

Using the “spiral” argument, one can also show that |Z×Z|= |Q|= ℵ0. It is
also possible to show that |A|= ℵ0. Refer to class lecture notes for details.

However, using the Cantor’s Diagonal Argument, one can show that |R|> |N|=
ℵ0. Thus we write |R|= ℵ1, and call it the cardinality of the continuum. Refer to
class lecture notes for details.

Relationship between ℵ0 and ℵ1: It can be shown that there exists a one-to-one
correspondence between the elements of R and P(N) (the power set of N). Thus,
ℵ1 = |R|= |P(N)|= 2ℵ0 . Refer to class lecture notes for details.
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