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Topologically Equivalent Spaces
Two spaces are called topologically equivalent if one can be changed into the other
by bending, pushing, stretching and smoothening operations, but NOT having to
use cutting or gluing operations.

Examples: The surface of a dough-nut (a torus) is topologically equivalent to the
surface of a coffee mug. The torus with a puncture on it is topologically equivalent
to the figure “8” (refer to class notes).

Practice problems:
Classify the spaces A-H drawn in the following figure into topologically equiv-
alent groups. (i.e., write which of these topological spaces are topologically
equivalent to which others in the list). Give explanations for your answers
along with intermediate drawings:
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Euclidean spaces
The 1-dimensional Euclidean space is R. The “picture” for this space is a line that
extends to infinity in both directions. Elements/points in this space/set are the usual
real numbers, x ∈ R.

Recall the definition of Cartesian product: If A and B are sets, then
A×B = {(a,b) | a ∈ A,b ∈ B}.

The 2-dimensional Euclidean space is the Cartesian product of two copies of
R. It is thus R2 =R×R= {(x,y) | x,y∈R}. The “picture” for this space is a plane
that extends to infinity in all the directions along the plane. Elements/points in this
space/set are pairs of real numbers, (x,y) ∈ R2.

The 3-dimensional Euclidean space is the Cartesian product of three copies
of R. It is thus R3 = R×R×R = {(x,y,z) | x,y,z ∈ R}. The “picture” for this
space is the usual 3-dimensional space that we live in, which extends to infinity
in all the directions. Elements/points in this space/set are 3-tuple of real numbers,
(x,y,z) ∈ R3.

The 4-dimensional Euclidean space is the Cartesian product of four copies of
R. It is thus R4 = R×R×R×R = {(x,y,z,w) | x,y,z,w ∈ R}. This does not
have a nice “picture” that we can refer to. But it is absolutely well-defined as a
Cartesian product of 4 copies of R. Elements/points in this space/set are 4-tuple of
real numbers, (x,y,z,w) ∈ R4.

We can continue this process and define n-dimensional Euclidean space in gen-
eral, which is the Cartesian product of n copies of R.

Manifolds and their Dimensions
A topological space is called a manifold if locally at every point it looks like a
Euclidean space. If locally it looks like R (a line), it is called a 1-dimensional
manifold, if locally it looks like R2 (a plane), it is called a 2-dimensional manifold,
if locally it looks like R3 (the 3-dimensional Euclidean space), it is called a 3-
dimensional manifold, and so on.
Examples:

The 1-dimensional Euclidean space, R, is a 1-dimensional manifold. A circle,
S1, is also a 1-dimensional manifold.

The figure “8” is not a manifold since there is a point (at the crossing of the
curve) where it locally looks like a “×” shape.

The 2-dimensional Euclidean space and the usual 2-dimensional sphere (the
surface of a ball), S2, are 2-dimensional manifolds. The usual torus (surface of
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a doughnut), the genus-2 torus, the genus-3 torus, etc. – all are 2-dimensional
manifolds.

A 2-dimensional sphere, S2, attached to a loop/circle at a point on it is not a
manifold.

The 3-dimensional Euclidean space is a 3-dimensional manifold. So is the 3-
dimensional sphere, S3.

Figure 1: Genus-2 torus.
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Cutting and Gluing
(Refer to Class Lectures and the book)
Example: Gluing along the same-colored arrows in the Figure 2 (and matching their

A B

AB

(a) Developed representation
of the Mobius Band

A A

AA

(b) Developed representation
of the Torus

A A

AA

(c) Developed representation
of the Klein bottle

Figure 2: Developed Representations.

directions) gives us the respective topological spaces.
Gluing the entire boundary of a 2-dimensional disk to a single point gives us the

2-dimensional sphere, S2.

First Betti Number of a 2-dimensional manifold

The first Betti number of a 2-dimensional manifold is the maximum number of
closed curves that you can draw on the manifold such that cutting along those closed
curves will not disconnect the space (i.e., will not create more than one pieces).
Examples:

The first Betti number of the usual torus is 2. The first Betti number of the
sphere, S2, is 0 (zero).

Simply-connected Space

A topological space is called simply-connected if any closed loop in the space can
be contracted to a point in a continuous manner, while keeping the loop in the
space all throughout. Examples of simply-connected spaces: R2,S2,S3. Examples
of spaces that are not simply-connected: S1, the usual torus, torus of genus 2 and
higher.
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Knot Theory
Knots are embeddings of the circle in R3. Knot diagrams are projections of the
knots on a plane. Examples of knots are shown in Figure 4.

(Refer to Class Lectures for more details)

Reidemeister moves

Reidemeister moves are “moves” made involving crossings in a knot upon perform-
ing which the knot remains equivalent to the original one. There are three Reide-
meister moves. It has been shown that if two knot diagrams are equivalent as knots,
then the three types of Reidemeister moves are sufficient to go from one diagram to
another. The three Reidemeister moves are shown below:
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(c) Reidemeister move of type 3

Figure 3: Reidemeister moves

Two knots are knot equivalent if one can be transformed into the other using
only the Reidemeister moves. An example using the Reidemeister moves is shown
in Figure 5.
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Trefoil knots (right-handed and left-handed)

Figure-8 Knot Square Knot

Granny Knot

Figure 4: Examples of Knots
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Figure 5: Examples of Knot equivalence illustrated using the Reidemeister moves.
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