Introduction to
Search-based Planning

Subhrajit Bhattacharya
Lehigh University

Search-based Planning
(Trajectory Planning Using Graph Search)

Optimal Path Planning in a Graph

Dijkstra's search algorithm:

/ Goal vertex

Additional observations/details:

« At any instant there are 3 disjoint sets of vertices:

and e rast.

Open list

g-scores (g: V= R)

4(5)=0.0°

. closed list,

« Heap data structure — efficient maintenance of an ordered list with fast

Insertion operations

(for maintaining g-scores for the open list).
« Worst complexity: O(|E | + [V | log |V |)

Pseudocode (Dijkstra’s)

g = Dijkstras (G, p)
Inputs: a. Graph GG

b. Start node p € V(G)

Outputs: a. The shortest distance map g : V(G) — R

1
2

10
11
12
13
14

Initiate g: Set g(v) := oo, for all v € V(&) // Minimum distance
Set g(p) =0
Set @ :={p} // Open list
while (Q # 0 AND stopping criterion not satisfied)
q:=argming .o g(q') // Vertex to expand.) is maintained by a heap data-structure.
if (9(q) ==00)
break
Q=0Q—q // Remove q from @
for each ({w € N¢(q) | w e Q@ OR g(w)==oc}) // For each unexpanded neighbor of ¢
Set ¢' := g(q) + Cq([g, w])
if (9" < g(w))
Set g(w) = ¢’
Set Q = QU {w} // Insert in open list if not already there.
return g

Pseudocode (Path Reconstruction)

P = Reconstruct_Path (G, g,r)

Inputs:

Outputs:

a. Graph G

b. The shortest distance map g : V(G) — R*

c. Vertex to which to find the shortest path, » € V(G)

a. A path (ordered set of vertices) in the graph, P = [p1, p2, ps,

JUIC pn:fp]

O o =1 O U ke Wy =

Initiate P = | |
if (g(r) == o0) // r unreachable from the start node

return P
Set v :=1r
while (g(v) # 0)

P=v® P // Insert v at the beginning of P.

v =argmingep, () 9(w) // back-trace predecessor that led to v.
P=v® P // Insert the final vertex (the start node) at the beginning of P.
return P

Where, P (u) = {w' € V(G) | [w',u] € E(G), g(v) = g(w')+Cq([w',u])}

IS the set of potential predecessors of u.

Pseudocode (A*)

P =A* (G,p,r hy)

Inputs: a. Graph G
b. Start node p € V(G)
c. Goal node r € V(G)
d. An admissible heuristic function, h, : V(G) — R4
Outputs: a. A path connecting start vertex to goal vertex, P = [p=p1, p2, p3, -+, pn=r]
1 | Initiate g, f: Set g(v) := oo, f(v):= oo, for all v € V(G)
2 | Set g(p) =0 and f(p) = h(p)
3 | Set @ :={p} // Open list
4 | while (Q # (0 AND stopping criterion not satisfied)
5 q :=argming, ., f(q") // Vertex to expand. Q is maintained by a heap data-structure.
9 if (¢ ==7r) // Goal vertex reached.
10 return Reconstruct_Path (G, g,r)
6 if (9(q)==00)
7 break // No path found.
8 Q=0Q—q [/ Remove g from Q)
9 for each ({w € Ng(q) | w € Q OR g(w)==oc}) // For each unexpanded neighbor of ¢
10 Set ¢’ := g(q) + Ca([g, w])
11 if (¢’ < g(w))
12 Set g(w) =
18 Set f(w) = g + h,(w)
13 Set Q = QU {w} // Insert in open list if not already there.
14 | return ||

Admissible heuristics function: h(v) should be less than or equal to cost

of shortest path from vtor.

Properties of A*

. If h, Is admissible, then A* Is guaranteed to return
the optimal path connecting the start and goal, r.

» Dijkstra’s search Is equivalent to A* search with
zero heuristics.

. Weighted A*: If the heuristic function used, h,, is

such that
h, < €¢h, (where, h, Is admissible, e>1)

then, the computed path is at most e-suboptimal
(the cost of the returned path is at most € times

the cost of the optimal path).

Optimal Path Planning in a Graph

Dijkstra's

/1

start

goal A* algorithm goal

Speed up search (expand
less vertices) using an
admissible heuristic
function (h: VxV - R)

that underestimates the
true least cost between
vertices.

/1 Still guarantees optimality.

start

Features of Dijkstra's and A*:

\ 4

start @

\ 4

® goal

« The complete graph need not be available to start with.

« We only need to be able to query the list of neighboring
vertices of vertex that we are expanding, and cost of
the edges connecting to them.

(Ex: useful when, for example, the obstacles are given

as semi-algebraic sets). 8
« The graph itself may be infinite/unbounded.

C++ Library for Graph Search

« DOSL (Discrete Optimal Search Library) :
Avallable at https://github.com/subh83/DOSL

https://github.com/subh83/DOSL

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

