
1

Introduction to
Search-based Planning

Subhrajit Bhattacharya
Lehigh University

2

Search-based Planning
(Trajectory Planning Using Graph Search)

start

goal

3

Optimal Path Planning in a Graph
Dijkstra's search algorithm:

g(s) = 0.0

s

1.0

2.5

1.5
1.0

1.0

1.0

g(a) = 1.0 = g(s) + 1.0
g(b) = 1.5 = g(s) + 1.5
g(c) = 1.0 = g(s) + 1.0
g(d) = 2.5 = g(s) + 2.5
g(e) = 1.0 = g(s) + 1.0
g(f) = 1.0 = g(s) + 1.0

a

b

c

d

e

f

1.0

1.6

< g(a) + 1.6

< g(a) + 1.0

1.2

1.0

h

g(h) = 2.0 = g(c) + 1.0

> g(c) + 1.2

1.0

 < g(c) + 1.0

2.2 = g(c) + 1.2

 < g(c) + 1.0 < g(c) + 1.0 < g(c) + 1.0

i

j

1.51.0

1.0

g(i) = 2.0
g(j) = 2.0

1.0

1.0

k

g(k) = 3.5

1.5
1.0

Goal vertex

Start vertex

Open list
g-scores (g: V → ℝ

+
)

Additional observations/details:

● At any instant there are 3 disjoint sets of vertices: Open list, closed list,
and the rest.

● Heap data structure – efficient maintenance of an ordered list with fast
insertion operations
(for maintaining g-scores for the open list).

● Worst complexity: O(|E | + |V | log |V |)

4

Pseudocode (Dijkstra’s)

5

Pseudocode (Path Reconstruction)

Where,

is the set of potential predecessors of u.

6

Pseudocode (A*)

Admissible heuristics function: hr(v) should be less than or equal to cost
of shortest path from v to r.

7

Properties of A*

● If hr is admissible, then A* is guaranteed to return
the optimal path connecting the start and goal, r.

● Dijkstra’s search is equivalent to A* search with
zero heuristics.

● Weighted A*: If the heuristic function used, hr, is
such that

 hr ≤ ε hr (where, hr is admissible, ε>1)
then, the computed path is at most ε-suboptimal
(the cost of the returned path is at most ε times
the cost of the optimal path).

8

Optimal Path Planning in a Graph
Dijkstra's

start

goal A* algorithm

start

goal

Speed up search (expand
less vertices) using an
admissible heuristic
function (h: V x V → ℝ

+
)

that underestimates the
true least cost between
vertices.
Still guarantees optimality.

Features of Dijkstra's and A*:

start

goal

● The complete graph need not be available to start with.

● We only need to be able to query the list of neighboring
vertices of vertex that we are expanding, and cost of
the edges connecting to them.
(Ex: useful when, for example, the obstacles are given
as semi-algebraic sets).

● The graph itself may be infinite/unbounded.

9

C++ Library for Graph Search

● DOSL (Discrete Optimal Search Library) :
Available at https://github.com/subh83/DOSL

https://github.com/subh83/DOSL

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

