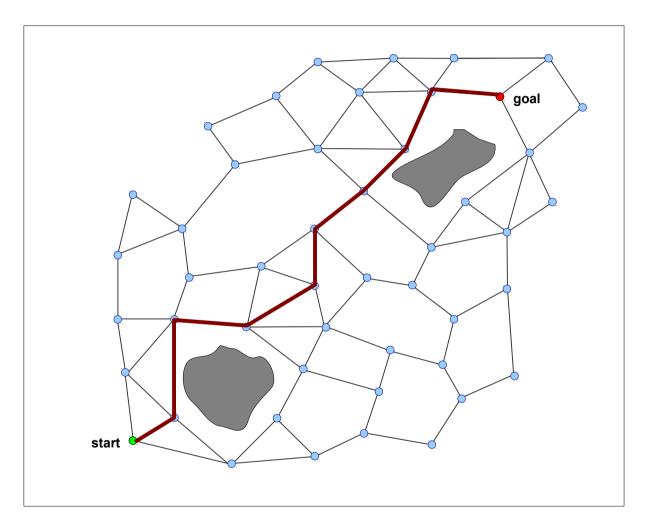
Introduction to Search-based Planning

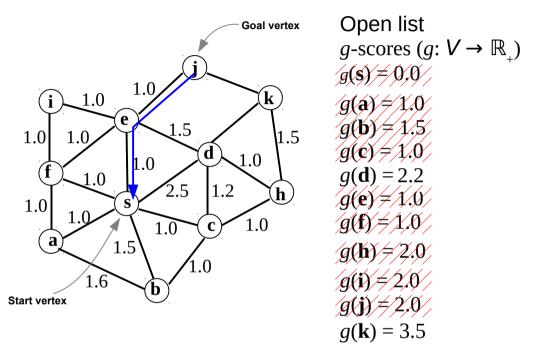
Subhrajit Bhattacharya Lehigh University

Search-based Planning (Trajectory Planning Using Graph Search)



Optimal Path Planning in a Graph

Dijkstra's search algorithm:



Additional observations/details:

- At any instant there are 3 disjoint sets of vertices: Open list, closed list, and the rest.
- Heap data structure efficient maintenance of an ordered list with fast insertion operations (for maintaining g-scores for the open list).
- Worst complexity: $O(|E| + |V| \log |V|)$

Pseudocode (Dijkstra's)

g =**Dijkstras** (G, p)Inputs: a. Graph Gb. Start node $p \in \mathcal{V}(G)$ a. The shortest distance map $g: \mathcal{V}(G) \to \mathbb{R}^+$ Outputs: Initiate g: Set $g(v) := \infty$, for all $v \in \mathcal{V}(G)$ // Minimum distance 1 $\mathbf{2}$ Set q(p) = 0Set $Q := \{p\}$ // Open list 3 while $(Q \neq \emptyset$ AND stopping criterion not satisfied) 4 $q := \operatorname{argmin}_{q' \in Q} g(q') / Vertex$ to expand. Q is maintained by a heap data-structure. 5if $(q(q) = = \infty)$ 6 7break Q = Q - q // Remove q from Q 8 for each $(\{w \in \mathcal{N}_G(q) \mid w \in Q \text{ OR } g(w) = = \infty\})$ // For each unexpanded neighbor of q 9 Set $q' := q(q) + \mathcal{C}_G([q, w])$ 10if (q' < q(w))11Set q(w) = q'12Set $Q = Q \cup \{w\}$ // Insert in open list if not already there. 13return g14

Pseudocode (Path Reconstruction)

P =**Reconstruct_Path** (G, g, r)Inputs: a. Graph Gb. The shortest distance map $g: \mathcal{V}(G) \to \mathbb{R}^+$ c. Vertex to which to find the shortest path, $r \in \mathcal{V}(G)$ a. A path (ordered set of vertices) in the graph, $P = [\rho_1, \rho_2, \rho_3, \cdots, \rho_n = r]$ Outputs: Initiate P = []1 if $(g(r) == \infty)$ // r unreachable from the start node $\mathbf{2}$ 3 return PSet v := r4 while $(g(v) \neq 0)$ 5 $P = v \oplus P$ // Insert v at the beginning of P. 6 $\overline{7}$ $v = \operatorname{argmin}_{w \in \mathcal{P}_{G,q}(v)} g(w) / / \text{ back-trace predecessor that led to } v.$ $P = v \oplus P$ // Insert the final vertex (the start node) at the beginning of P. 8 return P9

Where, $\mathcal{P}_{G,g}(u) = \{w' \in \mathcal{V}(G) \mid [w', u] \in \mathcal{E}(G), g(v) = g(w') + \mathcal{C}_G([w', u])\}$ is the set of potential *predecessors* of *u*.

Pseudocode (A*)

 $P = \mathbf{A^*} (G, p, r, h_r)$ Inputs: a. Graph Gb. Start node $p \in \mathcal{V}(G)$ c. Goal node $r \in \mathcal{V}(G)$ d. An admissible heuristic function, $h_r: \mathcal{V}(G) \to \mathbb{R}_+$ a. A path connecting start vertex to goal vertex, $P = [p = \rho_1, \rho_2, \rho_3, \cdots, \rho_n = r]$ Outputs: Initiate g, f: Set $g(v) := \infty$, $f(v) := \infty$, for all $v \in \mathcal{V}(G)$ 1 Set g(p) = 0 and f(p) = h(p)2Set $Q := \{p\}$ // Open list 3 while $(Q \neq \emptyset$ AND stopping criterion not satisfied) 4 $q := \operatorname{argmin}_{q' \in Q} f(q')$ // Vertex to expand. Q is maintained by a heap data-structure. 5if (q == r) // Goal vertex reached. 9 10return Reconstruct_Path (G, g, r)if $(q(q) == \infty)$ 6 7 **break** // No path found. Q = Q - q // Remove q from Q 8 for each $(\{w \in \mathcal{N}_G(q) \mid w \in Q \text{ OR } g(w) = = \infty\})$ // For each unexpanded neighbor of q 9 Set $q' := q(q) + \mathcal{C}_G([q, w])$ 10if (q' < q(w))11 Set q(w) = q'12Set $f(w) = g' + h_r(w)$ 18Set $Q = Q \cup \{w\}$ // Insert in open list if not already there. 1314return []

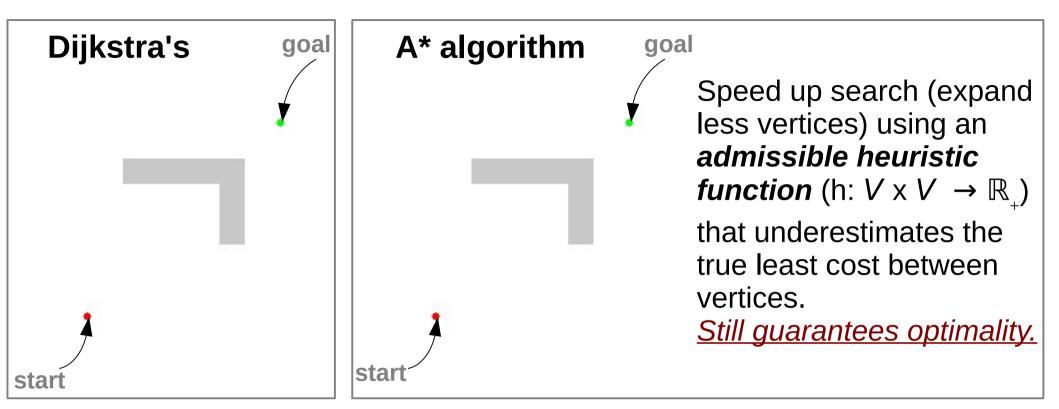
Admissible heuristics function: $h_r(v)$ should be less than or equal to cost of shortest path from v to r.

Properties of A*

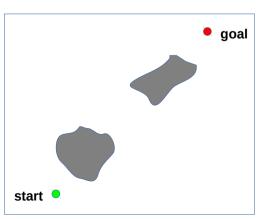
- If h_r is admissible, then A* is guaranteed to return the optimal path connecting the start and goal, r.
- Dijkstra's search is equivalent to A* search with zero heuristics.
- Weighted A*: If the heuristic function used, \overline{h}_r , is such that

 $\overline{h}_r \leq \varepsilon h_r$ (where, h_r is admissible, $\varepsilon > 1$) then, the computed path is at most ε -suboptimal (the cost of the returned path is at most ε times the cost of the optimal path).

Optimal Path Planning in a Graph



Features of Dijkstra's and A*:



- The complete graph need not be available to start with.
- We only need to be able to query the list of neighboring vertices of vertex that we are *expanding*, and cost of the edges connecting to them.

(*Ex:* useful when, for example, the obstacles are given as semi-algebraic sets).

• The graph itself may be infinite/unbounded.

C++ Library for Graph Search

 DOSL (Discrete Optimal Search Library) : Available at https://github.com/subh83/DOSL