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Search-based Planning
(Trajectory Planning Using Graph Search)
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Optimal Path Planning in a Graph
Dijkstra's search algorithm:
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Additional observations/details:
 

● At any instant there are 3 disjoint sets of vertices: Open list, closed list, 
and the rest.
 

● Heap data structure – efficient maintenance of an ordered list with fast 
insertion operations
(for maintaining g-scores for the open list).
 

● Worst complexity: O(|E | + |V | log |V |)
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Pseudocode (Dijkstra’s)
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Pseudocode (Path Reconstruction)

Where,

is the set of potential predecessors of u.
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Pseudocode (A*)

Admissible heuristics function: hr(v) should be less than or equal to cost 
of shortest path from v to r.
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Properties of A*

● If hr is admissible, then A* is guaranteed to return 
the optimal path connecting the start and goal, r.

● Dijkstra’s search is equivalent to A* search with 
zero heuristics.

● Weighted A*: If the heuristic function used, hr, is 
such that

 hr  ≤  ε hr      (where, hr is admissible, ε>1)
then, the computed path is at most ε-suboptimal 
(the cost of the returned path is at most ε times 
the cost of the optimal path).
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Optimal Path Planning in a Graph
Dijkstra's

start

goal A* algorithm

start

goal

Speed up search (expand 
less vertices) using an 
admissible heuristic 
function (h: V x V  → ℝ

+
) 

that underestimates the 
true least cost between 
vertices.
Still guarantees optimality.

Features of Dijkstra's and A*:

start

goal

● The complete graph need not be available to start with.
 

● We only need to be able to query the list of neighboring 
vertices of vertex that we are expanding, and cost of 
the edges connecting to them.
(Ex: useful when, for example, the obstacles are given 
as semi-algebraic sets).
 

● The graph itself may be infinite/unbounded.
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C++ Library for Graph Search

● DOSL (Discrete Optimal Search Library) : 
Available at https://github.com/subh83/DOSL 

https://github.com/subh83/DOSL
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