Subhrajit Bhattacharya Lehigh University

System state is described by $x \in \mathbb{R}^N$

Exact state is not known, but described by a Normal probability distribution, $\,\phi\sim \mathscr{N}(\mu,\Sigma)$

$$\phi(x) = \frac{1}{\sqrt{(2\pi)^N |\Sigma|}} \exp\left[-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right], \quad x \in \mathbb{R}^N$$

Deterministic system evolution: $x_k = F_k x_{k-1} + B_k u_k + w_k$ Probabilistic system evolution:

where, $f(x) = F_k x + B_k u_k$ In general, if ψ_{k-1} is inormal, ϕ_k is not Normal.

Deterministic system evolution: $x_k = F_k x_{k-1} + B_k u_k + w_k$

 $w_k \sim \mathcal{N}(0, Q_k)$

Probabilistic system evolution (*Prediction* step of Kalman Filter):

$$\overline{\mu}_k = F_k \mu_{k-1} + B_k u_k$$

$$\overline{\Sigma}_k = F_k \Sigma_{k-1} F_k^T + Q_k$$

$$\phi_{k-1} \sim \mathcal{N}(\mu_{k-1}, \Sigma_{k-1})$$
$$\overline{\phi}_k \sim \mathcal{N}(\overline{\mu}_k, \overline{\Sigma}_k)$$

Incorporating measurements:

$$\begin{aligned} \phi_k &= H_k x_k + v_k \\ & v_k \sim \mathcal{N}(0, R_k) \end{aligned}$$

Update step of Kalman Filter:

$$\mu_k = \overline{\mu}_k + K_k (z_k - H\overline{\mu}_k)$$

$$\Sigma_k = (I - K_k H_k) \overline{\Sigma}_k$$

where, $K_k = \overline{\Sigma}_k H_k^T (H_k \overline{\Sigma}_k H_k^T + R_k)^{-1}$

Bayesian inference:

 $P(\text{state is } x_k \mid \text{observation is } z_k) \propto P(\text{observation is } z_k \mid \text{state is } x_k) P(\text{state is } x_k) \\ \Rightarrow \quad \phi_k(x_k) \quad \propto \quad v_k(z_k - H_k x_k) \quad \overline{\phi}_k(x_k)$

System dynamics: $x_k = F_k x_{k-1} + B_{k-1} u_{k-1} + E_{k-1} d_{k-1} + w_k$ Motion model: $z_k = H_k x_k + v_k$ $x_k \in \mathbb{R}^n \ z_k \in \mathbb{R}^m \ u_k \in \mathbb{R}^p \ d_k \in \mathbb{R}^q$ $w_k \sim \mathcal{N}(0, Q_k)$ $v_k \sim \mathcal{N}(0, R_k)$

Kalman Filter summarized:

$$\mu_{k} = (I - K_{k}H_{k}) (F_{k}\mu_{k-1} + B_{k-1}u_{k-1} + E_{k-1}d_{k-1}) + K_{k}z_{k}$$

$$\Sigma_{k} = (I - K_{k}H_{k}) (F_{k}\Sigma_{k-1}F_{k}^{T} + Q_{k}) \longrightarrow \text{Riccati Difference Eqn.}$$

where,

$$K_{k} = \left(F_{k}\Sigma_{k-1}F_{k}^{T} + Q_{k}\right)H_{k}^{T}\left(H_{k}\left(F_{k}\Sigma_{k-1}F_{k}^{T} + Q_{k}\right)H_{k}^{T} + R_{k}\right)^{-1}$$

We will concisely write these recursive relations as:

$$\{\phi_0, \phi_1, \phi_2, \cdots\} = \mathcal{KF}_{\mathcal{P}}(\phi_0; \{[u_0, d_0], [u_1, d_1], \cdots\}; \{z_1, z_2, \cdots\})$$

where, $\mathcal{P} = (\{F_k\}, \{B_k\}, \{E_k\}, \{H_k\}, \{Q_k\}, \{R_k\})$

Example: Pursuit-Evasion Game for Normal Distributions

d(E,E')=0.419680, F(E',P)=17.446010, F(P,E)=17.864125 ?

