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Abstract— There are many applications in motion planning
where it is important to distinguish between and consider the
different homotopy classes of trajectories. Two trajectories are
homotopic if one trajectory can be continuously deformed into
another without passing through an obstacle, and a homotopy
class is a collection of homotopic trajectories. In this paper
we consider the problem of robot exploration and planning
in three-dimensional configuration spaces to (a) identify and
classify different homotopy classes and (b) plan trajectories
constrained to certain homotopy classes or avoiding some others.
In [1], the authors solve this problem for two-dimensional, static
environments using the Cauchy Integral Theorem in concert
with incremental graph search techniques. The robot workspace
is mapped to the complex plane and obstacles are poles in
this plane. The Residue Theorem allows the use of integration
along the path to distinguish between trajectories in different
homotopy classes. However, this idea is fundamentally limited
to two dimensions. In this work we develop new techniques to
save the same problem but in three dimensions. The integral
form of Ampere’s Law allows us to identify homotopy classes
in three dimensions. Skeletons of obstacles in the robot world
are extracted and are modeled by current-carrying conductors.
It can be shown using the Kelvin-Stokes theorem that the
line integral for closed loops are non-zero if and only if the
loop encloses one of the current carrying conductors, thus
letting us achieve both objectives (a) and (b). We describe the
development of a practical graph-search based planning tool
with theoretical guarantees by combining integration theory with
incremental search techniques, and illustrate it with examples
in three-dimensional spaces such as two-dimensional, dynamic
environments and three-dimensional static environments.

I. INTRODUCTION

Homotopy classes of trajectories arise due to presence of
obstacles in an environment. Two trajectories connecting the
same start and goal coordinates are in the same homotopy class
if they can be smoothly deformed into one another without
intersecting any obstacle in the environment, otherwise they
are in different homotopy classes. In many application, it
is important to distinguish between trajectories of different
homotopy classes, as well as identify the different homotopy
classes in an environment (e.g., trajectories that go left around
a circle in two dimensions versus right). For example, in
order to deploy a group of agents to explore an environment
[3], an efficient strategy ought to be able to identify the
multiple homotopy classes and deploy at least one agent in
each homotopy class. One may also wish to determine the
least cost path for each agent constrained to or avoiding
specified homotopy classes. In many problems the notion
of visibility is linked intrinsically with homotopy classes. In

tracking of uncertain agents in an environment with dynamic
obstacles, the ability to deal with occlusions during a certain
time frame is important [13]. A knowledge of the possible
homotopy classes of trajectories that the agent can take in
the environment during the period of occlusion can help more
efficient belief propagation.

Classification of homotopy classes and motion plan-
ning with homotopy class constraints in two-dimensional
workspaces have been studied in the past using geometric
methods [7, 9], probabilistic road-map construction [12] tech-
niques, triangulation-based path planning [4] and more re-
cently, using complex analysis and incremental path planning
techniques [1]. The last method is of importance because it
gives us a compact way of representing homotopy classes of
trajectories which is independent of the geometry, discretiza-
tion of the environment, cost function or search algorithm used
to find trajectories in the environment. The method is also
robust to noise in the environment created by sensor data.

In this paper we propose a novel way of classifying and
representing homotopy classes in a 3-dimensional config-
uration space using theorems from electromagnetism. The
representation is designed to be independent of the type of the
environment, the discretization scheme or cost function. Using
such a representation we show that homotopy class constraints
can be seamlessly integrated with graph search techniques for
determining optimal paths constrained to specified homotopy
classes or forbidden from others. We also discuss how one can
explore multiple homotopy classes in an environment using a
single graph search.

II. BACKGROUND

A. Homotopy Classes in Three Dimensional Spaces

We re-state the definition of Homotopy Classes [1].
Definition 1 (Homotopy Class of Trajectories): Two

trajectories (or paths), τ1 and τ2 connecting a pair of fixed
points are said to be in the same homotopy class (or simply
homotopic) iff one can be smoothly deformed into the other
without intersecting any obstacle. Otherwise they belong to
different homotopy classes.

While in the two-dimensional case, theoretically any finite
obstacle on the plane can induce multiple homotopy classes for
trajectories joining two points, the notion of homotopy classes
in three dimensions can only be induced by obstacles with
genus one or more, or with obstacles stretching to infinity in
two directions (The genus of an obstacle refers to the number
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(a) An unbounded obstacle
and its skeleton can be closed
at a large distance to create a
closed loop.

O
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(b) An obstacle with genus 2, O, can
be decomposed into 2 obstacles, each
with genus one, O1 and O2.

Fig. 1. Illustration of Constructions 1 and 2.

of holes or handles [11]. See Figure 2). For example, a torus-
shaped obstacle in a three-dimensional environment creates
two primary homotopy classes: i. The trajectories passing
through the “hole” of the torus, and ii. the trajectories passing
outside the “hole” of the torus. Figure 2 shows some examples
of obstacles that can or cannot induce homotopy classes for
trajectories. A sphere or a solid cube, for example, cannot
induce multiple homotopy classes in an environment.

Lemma 1: Two trajectories τ1 and τ2 connecting the same
points are homotopic if and only if they are homotopic with
respect to each and every obstacle in the environment.

Proof: Follows from definition of homotopy class.
Definition 2 (Simple Homotopy-Inducing Obstacle): A

Simple Homotopy-inducing Obstacle (SHIO) is a bounded
obstacle of genus 1, for example a torus (Figure 2(a), 2(b))
or a knot (Figure 2(e)).

B. Skeleton of a SHIO

In [1], each obstacle in a 2-dimensional plane that induces
the notion of multiple homotopy classes is assigned a rep-
resentative point. Analogously, for the 3-dimensional case,
we need to define a skeleton for every SHIO. Intuitively, a
skeleton of a 3-dimensional obstacle is a 1-dimensional curve
that is completely contained inside the obstacle such that the
surface of the obstacle can be “shrunk” onto the skeleton in a
continuous fashion without altering the topology of the surface
of the obstacle. Formally, we define the skeleton of an obstacle
in terms of homotopy equivalence.

Definition 3 (Skeleton): A 1-dimensional manifold, S, is
called a skeleton of a SHIO, O, iff S is homeomorphic to S1 (a
circle), S is completely contained inside O, and if S and O are
homotopy equivalent (i.e., if the obstacle O is replaced by an
equivalent obstacle S, then the homotopy equivalence between
two arbitrary trajectories, τ1 and τ2, connecting every pair of
fixed points in the environment, will remain unchanged.)

In the literature, algorithms for constructing skeletons of
solid objects is well-studied [2, 10]. However in the present
context we have a much relaxed notion of skeleton. While we
can adopt any of the different existing algorithms for auto-
mated construction of skeleton from a 3-dimensional obstacles,
this discussion is out of the scope of the present work. Figure
2(a) demonstrates how a skeleton can be constructed for a
generic genus 1 obstacle. There is definitely no unique way of

constructing such a skeleton. For the results in this paper with
the X−Y −Z domain, we either hand-picked key-points inside
obstacles to construct skeletons, or created obstacles around
a skeleton to begin with. For the X − Y − Time domain
we used similar notion as representative points [1] inside
moving obstacles, that automatically creates a skeleton for that
obstacles in X−Y −Time domain because of extrusion along
the time axis.

C. Conversion of generic obstacles into SHIOs

Given a set of obstacles in a three-dimensional environment,
we perform the following two constructions/reduction on the
obstacles so that the only kind of obstacle we have in the
environment are Simple Homotopy-Inducing Obstacles. The
Construction 1 is mostly trivial in the sense that it can be
easily automated for arbitrary obstacles. Construction 2 on the
other hand is linked with the construction of skeleton of the
obstacles (Definition 3) and is discussed later.

Construction 1 (Closing infinite, unbounded obstacles):
In most of the problems that we are concerned with, the
domain in which the trajectories of the robots lie is finite and
bounded. This gives us the freedom of altering/modifying
the obstacles or parts of obstacles lying outside that domain
without altering the problem. One consequence of this
freedom is that we can close infinite and unbounded obstacles
(e.g. Figure 2(d)) at a large distance from the domain of
interest (Figure 1(a)). While this construction does not effect
the problem itself, as we will discuss later, it will help us
with numerical integration and computation of homotopy
signature of trajectories.

Construction 2 (Decomposing obstacles with genus > 1):
After closing all infinite, unbounded obstacles in an
environment according to Construction 1, if there is
an obstacle with genus k (e.g. Figure 2(c)), we can
decomposed/split it into k obstacles, possibly overlapping
and touching each other, but each with genus 1 (Figure 1(b)).
This does not change the obstacles or the problem in any
way. This construction just changes the way we identify
obstacles. For example in Figure 1(b) the original obstacle O
with genus 2 is realized as two obstacles O1 and O2, each
with genus 1 and overlapping each other. The decomposition
of obstacles into SHIOs allows us define k skeletons for each
obstacle of genus k and simplify computations of homotopy
signatures of trajectories.

D. Biot-Savart law

Consider a single hypothetical current-carrying curve (a
current conducting wire) embedded in a 3-dimensional space
carrying a steady current of unit magnitude (Figure 3(a)). It
is to be noted that such a steady current is possible iff the
curve is closed (or open, but extending to infinity, where we
close the curve using a loop at infinity. See Figure 1(a) and
Construction 1). We denote the curve by S. Then, according to
the Biot-Savart Law [6], the magnetic field B at any arbitrary
point r in the space, due to the current flow in S , is given by,



(a) A skeleton of a
generic obstacle of
genus 1 can be modeled
as a current-carrying
conductor.

(b) A torus-shaped
genus 1 obstacle.

(c) A genus 2 obstacle. (d) An infinite tube is a
genus 1 obstacle.

(e) A knot-shaped ob-
stacle which has genus
1.

(f) A sphere does
not induce homotopy
classes and has genus 0.

Fig. 2. Obstacles that do and do not induce homotopy classes in a 3-dimensional space.
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(b) Two trajectories, τ1 and
τ2, connecting the same points
form a closed loop.

Fig. 3.

B(r) =
µ0

4π

∫
S

(x− r)× dx

‖x− r‖3
(1)

where, x, the integration variable, represents the coordinate of
a point on S , and dx is an infinitesimal element on S along
the direction of the current flow.

E. Ampere’s Law

While Biot-Savart law gives a recipe for computing the
magnetic field from a given current configuration, Ampere’s
Law [6], in a sense, gives the inverse of it. Given the magnetic
field B at every point in the space, and a closed loop C
(Figure 3(a)), the line integral of B along C gives the current
enclosed by the loop C. That is,

Ξ(C) :=

∫
C

B(l) · dl = µ0Iencl (2)

where, l, the integration variable, represents the coordinate of
a point on C, and dl is an infinitesimal element on C.

In Biot-Savart Law and Ampere’s Law one can conveniently
choose the constant µ0 to be equal to 1 by proper choice of
units. Moreover, by choice, the value of the current flowing
in the conductor is unity. Thus, for any closed loop C, the
value of Ξ(C) is zero iff C does not enclose the conductor,
otherwise it is ±1 (the sign depends on the direction of
integration performed on C). Thus in Figure 3(a), Ξ(C1) = 1
and Ξ(C2) = 0.

III. APPLICATION OF THEORY OF ELECTROMAGNETISM IN
IDENTIFYING HOMOTOPY CLASSES

A. Skeleton of SHIOs as Current Carrying Manifolds

Construction 3: (Modeling skeleton of a SHIO as a

current carrying manifold) This is the key construction:
Given m obstacles in an environment, O1,O2, . . . ,Om, with
genus k1, k2, . . . , km respectively, we can construct M =
k1 + k2 + · · ·+ km skeletons from M SHIOs (obtained using
Constructions 1 and 2), namely S1, S2, . . . , SM . Each Si is a
closed, connected, boundary-less 1-dimensional manifold. We
model each of them as a current-carrying conductor carrying
current of unit magnitude (Figures 2(a), 1(a)). The direction
of the currents is not of importance, but by convention, each
is of unit magnitude.

Definition 4 (Virtual Magnetic Field due to a Skeleton):
Given Si, the skeletons of a Simple Homotopy-Inducing
Obstacle, we define a Virtual Magnetic Field vector at a point
r in the space due to the current in Si using Ampere’s Law
as follows,

Bi(r) =
1

4π

∫
Si

(x− r)× dx

‖x− r‖3
(3)

where, x, the integration variable, represents the coordinates
of a point on Si, and dx is an infinitesimal element on Si
along the chosen direction of the current flow in Si.

B. Homotopy Signature

Definition 5 (Homotopy Signature): Given an arbitrary
trajectory, τ , in the 3-dimensional environment with M skele-
tons, we define the homotopy signature of τ to be the following
M -vector,

H(τ) = [h1(τ), h2(τ), . . . , hM (τ)]T (4)

where,
hi(τ) =

∫
τ

Bi(l) · dl (5)

is defined in an analogous manner as the integral in Ampere’s
Law. In defining hi, Bi is the Virtual Magnetic Field vector
due to the unit current through skeleton Si, l is the integration
variable that represents the coordinate of a point on τ , and dl
is an infinitesimal element on τ .

Lemma 2: Two trajectories τ1 and τ2 connecting the same
pair of fixed end points belong to the same homotopy class if
and only if their homotopy signatures are the same.

Proof: Since τ1 and τ2 connect the same points, τ1∪−τ2,
i.e. τ1 and −τ2 together (where −τ indicates the same curve
as τ , but with the opposite orientation) form a closed loop
in the 3-dimensional environment (Figure 3(b)). We replace
the obstacles O1,O2, . . . ,Om in the environments with the
skeletons S1, S2, . . . , SM .



Consider the skeleton Si. By the direct consequence of
Ampere’s Law and our construction in which a unit current
flows through Si, the value of

hi(τ1 ∪ −τ2) =

∫
τ1∪−τ2

Bi(l) · dl

is non-zero if and only if the closed loop formed by τ1 ∪−τ2
encloses the current carrying conductor Si. Otherwise it is
zero. For example, in Figure 3(b), hp(τ1 ∪ −τ2) = 1 and
hq(τ1 ∪ −τ2) = 0. A direct consequence of this fact is that
hi(τ1 ∪−τ2) = 0 if and only if τ1 can be smoothly deformed
into τ2 without intersecting Si. Now, by the definition of line
integration we have the following identity,

hi(τ1 ∪ −τ2) =
∫
τ1∪−τ2Bi(l) · dl

=
∫
τ1

Bi(l) · dl−
∫
τ2

Bi(l) · dl = hi(τ1)− hi(τ2)
(6)

Thus, hi(τ1) = hi(τ2) if and only if τ1 can be smoothly
deformed into τ2 without intersecting Si (i.e homotopic).

Now by Lemma 1, τ1 and τ2 are homotopic if and only if
they are homotopic with respect to each and every obstacle
in the environment. That is, τ1 and τ2 are homotopic if and
only if hi(τ1) = hi(τ2), ∀i = 1, 2, . . . ,M , i.e. H(τ1) =
H(τ2), i.e. the homotopy signatures of τ1 and τ2 are identical.
From Definition 3 it is clear we can replace the obstacles with
the skeletons S1, S2, . . . , SM for the purposes of computing
homotopy signatures.

C. Some notes on the value of Homotopy Signature

“Looping” of a trajectory around an obstacle (Figure 4(a))
is similar in essence to non-Jordan curves on two-dimensional
planes. However in three dimensions their precise and univer-
sal definition is more difficult. One way of identifying one of
the homotopy classes of trajectories (joining a given start and
an end coordinate) that do not loop around a skeleton Si is by
joining the start and the end coordinates using a straight line
segment (call it τ ). Then the trajectories that are homotopic to
τ form a particular homotopy class of non-looping trajectories
w.r.t. Si (for example, in Figure 4(a), the homotopy class to
which τ2, and hence τ2, belong are non-looping). However,
for more complex obstacles (like knots), the notion of a non-
looping trajectory being a straight line segment breaks down
(See Figure 4(b)). In fact the notions of looping and non-
looping is imprecise in such cases. In Appendix VII-A we
show that for the special simple case when Si is an infinitely
long line, the component of the homotopy signature hi(τ) for
a line segment τ lies between −1 and 1. We hence propose the
following mathematical definition of a non-looping trajectory,

Definition 6 (Non-looping trajectory w.r.t. Si): A trajec-
tory τ is said to be non-looping w.r.t. Si if hi(τ) ∈ (−1, 1).
The value is in [0, 1) if the trajectory goes around Si in
accordance with the right-hand rule with thumb pointing along
the direction of the current in Si. If the direction is opposite,
the value lies in (−1, 0].

This definition, in many cases, conform to our general
intuition of non-looping trajectories. If another trajectory, τ ′,

τ1

τ2

Si

τ2

(a) Trajectory that loops around
a skeleton and trajectory that
doesn’t. In this figure hi(τ1) > 1
and 0 < hi(τ2) = hi(τ2) < 1.

τSi

(b) In the most general case, it is
difficult to precisely identify a non-
looping homotopy class.

Fig. 4.

connecting the same start and end points as a non-looping
trajectory τ , goes on the “other side of the obstacle” without
looping around it, then τ ∪ −τ ′ forms a closed loop that
encloses Si. Then, hi(τ∪−τ ′) = ±1 = sign(hi(τ∪−τ ′)). But
since, τ and τ ∪−τ ′ goes around Si in the same orientation,
we have sign(hi(τ ∪−τ ′)) = sign(hi(τ)). Again by property
of line integration, hi(τ ∪ −τ ′) = hi(τ) − hi(τ

′). Thus,
hi(τ

′) = hi(τ) − sign(hi(τ)). Thus we have the following
definition.

Definition 7 (Complementary Homotopy Class): Given
a trajectory τ that is non-looping w.r.t. all the skeletons in
the environment (i.e. hi(τ) ∈ (−1, 1) ∀ i = 1, 2, . . . ,M ), we
define the Complementary Homotopy Class of the homotopy
class of τ to be the one for which the homotopy signature is
H(τ) − sign(H(τ)), where sign(·) gives the vector of signs
of the elements of its input vector.

IV. SEARCH-BASED PLANNING IN THREE DIMENSIONS
WITH HOMOTOPY CLASS CONSTRAINTS

We now investigate the problem of search-based path plan-
ning for trajectories in 3-dimensional configuration spaces. Pri-
marily we investigate two types of problems: (i.) Exploration
of the different homotopy classes of trajectories connecting
a given start and goal coordinates in the environment, and
(ii.) Planning for trajectories with specified homotopy class
constraints (where we are required to find trajectories restricted
to specified homotopy classes, and/or avoiding other specified
homotopy classes). We perform these tasks in two kinds of en-
vironments: a) two-dimensional dynamic environment (i.e. X-
Y-Time domain), and b) three-dimensional static environment
(i.e. X-Y-Z domain).

In the discussion that follows, we represent a point in the
3-dimensional configuration space using the coordinates v =
(x, y, z), with the understanding that z can represent time in
the time-varying 2-dimensional environment.

The approach, as in [1], is to discretize the configuration
space, construct a directed graph out of it, and perform a
graph search in it. The discretization can be quite general.
Approximate or exact cell decompositions can be used to
generate a roadmap. The roadmap can be probabilistic or
deterministic. Or a uniform grid representation can be used
to generate a graph, which is the representation used here.



s1

s2

sn

…
…

…

s j

s j+1 Bi

(a) A skeleton of an obstacle can be
constructed or approximated such
that it is made up of n line seg-
ments.

sj

sj'

α
α'

r

d

p

p'
n̂

(b) Magnetic field at r due to the
current in a line segment sji s

j′
i can be

computed analytically.

Fig. 5.

The discretized space is represented by the graph G = (V, E),
in which each node v = (x, y, z) ∈ V represents the
coordinate of a discretized cell. Depending on the type of
configuration space, the nodes are connected to their relevant
neighboring nodes by weighted edges, where the weights are
equal to the cost of traversing the edge. A directed edge
connecting node v1 to v2 is represented by {v1 → v2}.
Inaccessible coordinates (lying inside obstacles or outside a
specified workspace) do not constitute nodes of the graph. A
path in this graph represents a trajectory of the robot in the
3-dimensional configuration space. Moreover, small obstacles
(e.g. created by sensor noise), or obstacles that we don’t desire
to contribute towards the homotopy class of trajectories, can
be chosen not to have a skeleton, thus preventing them from
claiming a component in the homotopy signature vector.

We will discuss the connectivity of the graph, G, and the
cost function in greater details for each of the two types of
configuration space we present in Section V.

A. Computation of Homotopy Signature for an Edge of G
For all practical applications we assume that a skeleton of an

obstacle, Si, is made up of finite number (ni) of line segments:
Si = {

−−→
s1i s

2
i ,
−−→
s2i s

3
i , . . . ,

−−−−−→
sni−1
i sni

i ,
−−−→
sni
i s1i } (Figure 5(a)). Thus,

the integration of equation (3) can be split into summation of
ni integrations,

Bi(r) =
1

4π

ni∑
j=1

∫
−−−→
sjis

j′
i

(x− r)× dx

‖x− r‖3
(7)

where j′ ≡ 1 + (j mod ni).
One advantage of this representation of skeletons is that

for the straight line segments,
−−→
sji s

j′

i , the integration can be
computed analytically. Specifically, using a result from [6]
(also, see Figure 5(b)),∫

−−−→
sjis

j′
i

(x− r)× dx

‖x− r‖3
=

1

‖d‖
(sin(α′)− sin(α)) n̂

=
1

‖d‖2

(
d× p′

‖p′‖
− d× p

‖p‖

)
(8)

where, d,p and p′ are functions of sji , s
j′

i and r (Figure 5(b)),
and can be expressed as,

p = sji − r , p′ = sj
′

i − r ,

d =
(sj

′

i − sji )× (p× p′)

‖sj′i − sji‖2
(9)

We define and write Φ(sji , s
j′

i , r) for the RHS of Equation (8)
for notational convenience. Thus we have,

Bi(r) =
1

4π

ni∑
j=1

Φ(sji , s
j′

i , r) (10)

where, j′ ≡ 1 + (j mod ni).
Given an edge e ∈ E , we can now compute the homotopy

signature, H(e) = [h1(e), h2(e), . . . , hM (e)]T , where,

hi(e) =
1

4π

∫
e

ni∑
j=1

Φ(sji , s
j′

i , l) · dl (11)

can be computed numerically.

B. Homotopy Signature Augmented Graph

Let vs = (xs, ys, zs) be the start coordinate in the config-
uration space, and vg = (xg, yg, zg) be the goal coordinate.
By Lemma 2, any two trajectories from vs to v that belong
to the same homotopy class will have the same homotopy
signature. The homotopy signature can assume different, but
discrete values corresponding on the homotopy class of the
trajectory. We also write P(vs,v) to denote the set of all
trajectories from vs to v, and ṽsv ∈ P(vs,v) to denote a
particular trajectory in that set.

1) Allowed and Blocked Homotopy Classes: Suppose it
is required that we restrict all our search for trajectories
connecting vs and vg to certain homotopy classes, or not
allow certain homotopy classes. We denote the set of allowed
homotopy signatures of trajectories leading up to vg by the set
A, and the set of blocked homotopy signatures as B. A and B
are essentially complement of each other (A∪ B = U , where
the universal set, U , is the set of the homotopy signatures of
all the homotopy classes of trajectories joining vs and vg),
and B can be an empty set when all homotopy classes are
allowed. Following the discussion in Section III-C, it is also
possible to restrict search to non-looping trajectories by putting
all homotopy signatures that have at least one element outside
(−1, 1) into the set B.

2) Homotopy Signature Augmented Graph: Once we have
the means of computing homotopy signature for each edge,
we introduce the concept of homotopy signature augmented
graph. We define the homotopy signature augmented graph
of G as the graph GH(G) = {VH , EH}, such that each node
in this new graph has the homotopy signature of a trajectory
leading up to the coordinate of the node from vs appended
to it. That is, each node in this augmented graph is given by
{v,H(ṽsv)}, for some ṽsv ∈ P(vs,v). Thus, corresponding
to a given v ∈ V , since there are discrete homotopy classes
of trajectories from vs to v, there are a discrete number
of the augmented states, {v,h} ∈ VH , where h is a M -
vector and assumes the values of the homotopy signatures
corresponding to the discrete homotopy classes. Thus, we



define the homotopy signature augmented graph of G as
follows,

GH = {VH , EH}

where,

1.

VH =

{v,h}
∣∣∣∣∣∣∣∣∣∣

v ∈ V, and,
h = H(ṽsv) for some trajectory

ṽsv ∈ P(vs,v), and,
h ∈ A (equivalently, h /∈ B)

when v = vg


2. An edge {{v,h} → {v′,h′}} is in EH for {v,h} ∈ VH

and {v′,h′} ∈ VH , iff

i. The edge {v→ v′} ∈ E , and,
ii. h′ = h + H(v → v′), where, H(v → v′) is the

homotopy signature of the edge {v→ v′} ∈ E .

3. The cost/weight associated with an edge {{v,h} →
{v′,h′}} is same as the cost/weight associated with edge
{v→ v′} ∈ E .

The consequence of point 3 in the above definition is that an
admissible heuristics for search in G will remain admissible
in GH . That is, if f(v,vg) was the heuristic function in G,
we define fH({v,h}, {vg,h′}) = f(v,vg) as the heuristic
function in GH for any h′ ∈ A.

The consequence of augmenting each node of G with a
homotopy signature is that now nodes are distinguished not
only by their coordinates, but also the homotopy class of the
trajectory followed to reach it. Typically we use graph search
algorithms like A* (or variants like D* or D*-lite) where nodes
in the graph GH are expanded starting from the node {zs,0}
(where by 0 we mean a M -dimensional vector of zeros).
For exploration of homotopy classes, whenever we expand
a state {zg, h̃} ∈ VH , for some h̃ /∈ B, we store the path
up to that node, and continue expanding more states until
the desired number of homotopy classes are explored. That
way we explore homotopy classes in order of their path costs.
For searches with homotopy class constraint, we stop upon
expansion of a goal coordinate {zg, h̃} for some h̃ /∈ B (or
equivalently, h̃ ∈ A).

C. Theoretical Analysis

Theorem 1: If P∗H = {{v1,h1}, {v2,h2}, · · · , {vp,hp}}
is an optimal path in GH , then the path P∗ = {v1,v2, · · · ,vp}
is an optimal path in the graph G satisfying the Homotopy class
constraints specified by A and B

Proof: By construction of GH , the path {v1,v2, · · · ,vp}
satisfies the given homotopy class constraints. Moreover by
definition, P∗H is a minimum cost path in GH . Since the cost
function in GH is the same as the one in G and does not
involve hj , it follows that the projection of P∗H on G given
by P∗ = {v1,v2, · · · ,vp} is an optimal path in the graph G
satisfying the homotopy class constraints defined in GH .

(a) Two hoops. (b) A room with windows.

Fig. 6. Exploring homotopy classes in X − Y − Z space.

V. RESULTS

We implemented the graph structure, GH , and A* search
algorithm [8] to search in the graph using C++ programing
language. For the numerical integration in Equation (11)
we used the GNU Scientific Library [5]. For the graphic
visualization we used OpenCV and OpenGL libraries.

A. Planning in 3-dimensional space with static obstacles

The first domain in which we implement the planning
algorithm is the space of 3 spatial dimensions, X,Y and Z.
For a particular problem, the domain of interest is bounded
by upper and lower limits of the 3 coordinates. The domain is
then uniformly discretized into cubic cells and a node of G is
placed at the center of each cell. Connectivity is established
between a node and its 26 neighbors (all cells that share at least
one corner, edge or face with it). Each edge is bi-directional
and its cost is the Euclidean length.

1) Simple environments with bounded obstacles: Fig-
ure 6(a) demonstrates a simple environment, 20 × 20 × 18
discretized, with two torus-shaped obstacles. The skeleton of
each obstacle is made up of line segments passing through
the central axis of the cylindrical segments. Here we restrict
search to non-looping trajectories. That is, we set B ={
h = [h1, h2]T

∣∣ |h1| > 1 or |h2| > 1
}

. We search for 4 ho-
motopy classes of trajectories connecting a given start and goal
coordinate. As shown in Figure 6(a), the algorithm finds four
such trajectories: (i) going through hoops 1 and 2; (ii) going
through hoop 1 but not through hoop 2; (iii) going through
hoop 2 but not through hoop 1; and (iv) not going through
either hoops. According to Theorem 1 each path is the least
cost one in the graph and in its respective homotopy class.

Figure 6(b) shows the exploration of 4 homotopy classes in
and around a room with windows on each wall. The skeletons
for this obstacle are defined as loops around each window
according to Construction 2. The trivial shortest path from the
given start to goal configuration goes outside the room (the
dark violet trajectory). Trajectories in other homotopy classes
pass through the room.

2) Environment with unbounded Pipes: Figure 7(a) shows a
more complex environment consisting of 7 pipes stretching to
infinity. The workspace of choice is 44× 44× 44 discretized,



(a) Exploring 10 distinct homotopy
classes.

(b) Plan in the complementary ho-
motopy class of the least cost path.

Fig. 7. An environment with 7 unbounded pipes.

0 2 4 6 8 10
0

10

20

30

40

50

60

Number of homotopy classes explored

nodes expanded (104)
time taken (s)

Fig. 8. Cumulative time taken and number of states expanded while searching
GH for 10 homotopy classes in the problem of Figure 7(a).

with the start and goal coordinates at two opposite corners
of the discretized space. In Figure 7(a) we find the least cost
paths in 10 different homotopy classes.

3) Planning with Homotopy Class Constraint: Figure 7(b)
demonstrates a planning problem with homotopy class con-
straint. The darker trajectory is the global least cost path found
from a search in G for the given start and goal coordinates.
The homotopy signature for that trajectory was computed,
and hence we computed the signature of the complementary
homotopy class (Definition 7), and put it in A. The lighter
trajectory is the one planned with that A as the set of allowed
homotopy signature. This trajectory goes on the opposite side
of each and every pipe in the environment as compared to the
darker trajectory.

4) Search Speed and Efficiency: We now present the run-
ning time for the case in Figure 7(a). The environment, as
described earlier, is 44 × 44 × 44 discretized, and hence G
contains 85184 nodes. Due to each node being connected to
26 of its neighbors, there are almost 13 times as many edges in
G. The program was run on a Intel Core 2 Duo processor with
2.1 GHz clock-speed and 3GB RAM. We first compute the
values of H(e) for all edges e ∈ E and store them in a cache,
which takes about 2273s. Then we perform the A* search
in GH , using the values from the cache whenever required.
By doing so we eliminate the requirement of re-computing
the homotopy signatures of the edges every time we perform
a search, even with changed start and goal coordinates. The
search for the 10 homotopy classes in Figure 7(a) took about
30s and expansion of 521692 nodes in GH . Figure 8 shows
the cumulative time required and the number of nodes in GH
expanded during search for the 10 homotopy classes.

B. Planning in 2-dimensional plane with moving obstacles

The next 3-dimensional domain that we experiment with is
that of the two-dimensional plane, but with dynamic entities.
Thus the variables of interest are X,Y and time. The node
set was formed by uniform discretization of the domain of
interest. The connectivity of the graph is such that the time
variable can increase only in the positive direction (each node
connected to 9 neighboring nodes in next time step, including
the same x & y). The cost of an edge, e, with differences in
the coordinates of its end points ∆x,∆y and ∆t is computed
as c(e) =

√
∆x2 + ∆y2 + ε∆t2, where ε is a small value for

avoiding zero cost edges in GH . The skeleton of the moving
obstacles are the curves traced by their centers (yellow dots in
Figure 9) in the X−Y −Time space. The skeletons are closed
outside and far from the discretized domain (Construction 1).
Note that in doing so, segments of the skeleton may point
along negative time. However that does not effect the planning
since the X − Y − Time space itself can be treated no
differently from R3.

Figure 9 shows the screen-shots from exploration of 4
homotopy classes in X−Y −Time domain. The environment
is 40 × 40 discretized in X and Y directions, and have 100
discretization cells in time. There are two dynamic rectangular
obstacles,O1 andO2, that undergo a known oscillatory motion
inside a narrow passage between other static obstacles. The
4 different trajectories in the different homotopy classes are
marked by different colors as well as different numbers at their
current locations. The trajectories in the non-trivial homotopy
classes go behind the obstacles, a region that would otherwise
not be visited by the least cost path without any homotopy
class consideration.

VI. CONCLUSION

In this paper we have proposed a novel and efficient way of
representing homotopy classes in 3-dimensional configuration
spaces by exploiting laws from Theory of Electromagnetism.
We have shown that this representation is well suited for
use with incremental graph search techniques for finding
least cost paths respecting given homotopy class constraints
as well as for exploring different homotopy classes in an
environment. The method is independent of the discretization
scheme, the cost function or geometry of the environment. We
have demonstrated the efficiency, applicability and versatility
of the method in our results.

VII. APPENDIX

A. Homotopy signature of a non-looping trajectory w.r.t. an
infinite straight line skeleton

Making use of the result from Equation (8), if the current
carrying line segment stretches to infinity in both direction
(i.e. it becomes a line), we have α′ = π

2 and α = −π2 . The
virtual magnetic field due to Si at a point r becomes

Bi =
1

4π

2 n̂

‖d‖ =
1

2π

n̂

‖d‖ (12)

Note that the contribution of the closing curve at infinity
(Construction 1) becomes zero in the above quantity.



(a) t = 0.4s (b) t = 8.6s (c) t = 20.8s (d) t = 23.7s (e) t = 26.7s

(f) t = 29.6s (g) t = 32.5s (h) t = 37.0s (i) t = 40.0s (j) t = 43.1s

Fig. 9. Screen-shots from an example with two moving obstacles (O1 and O2) showing the exploration of 4 homotopy classes in a dynamic environment.
The blue trajectory (3) passes above both O1 and O2. The red trajectory (2) passes above O2, but not O1. The light blue-gray trajectory (1) passes above
O1, but not O2. The dark gray trajectory (0) is the trivial shortest path.
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Fig. 10. An infinitely long skeleton and homotopy signature of a straight
line segment.

Now consider the straight line segment trajectory τ =
rArB . Let the line containing τ (i.e. formed by extending τ
to infinity in both directions) be T (Figure 10). Consider the
shortest distance between Si and T and let it be D. Assuming
Si and T are not parallel, there is a unique point on each
of these line (p and q respectively) that are closest and are
separated by the distance D. The line segment joining the
closest points, pq, is perpendicular to both Si and T . The
main diagram of Figure 10 shows the projection of Si and
T on a plane perpendicular to pq. Note that this plane (the
plane of the paper) is parallel to both Si and T , since it is
perpendicular to pq.

We define an orthonormal coordinate system with unit
vectors î pointing along Si in the direction of the current, and
unit vector k̂ pointing along pq. Using these, and referring to
Figure 10, we now can write the following equations,

‖d‖2 = D2 + l2 sin2 φ

n̂ = cosβ k̂− sinβ ĵ , dr = (cosφ î + sinφ ĵ) dl
(13)

where, φ is a constant angle between Si and T on the plane
of the paper, cosβ = l sinφ

‖d‖ , sinβ = D
‖d‖ , and l is the length

parameter along T starting at q. Thus from (12),

Bi · dr = − 1

2π

sinβ sinφ

‖d‖ dl = − D sinφ

2π

dl

D2 + l2 sin2 φ
(14)

Thus,
∫
τ

Bi · dr = −D sinφ

2π

∫ lB

lA

dl

D2 + l2 sin2 φ

= − 1

2π

(
arctan

(
lB

D/ sinφ

)
− arctan

(
lA

D/ sinφ

))
(15)

An arctangent of a quantity, with consideration for proper
quadrants, can assume values between −π and π. Thus the
quantity within the outer brackets of Equation (15), that is the
difference of two arctangents, can assume values between −2π
and 2π. Thus the integral

∫
τ

Bi·dr, can assume values between
−1 and 1. Thus, as claimed in Section III-C, a straight line
segment trajectory indeed has the value of hi(τ) in (−1, 1)
for this simple case of infinitely long line Si.
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