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I. H -SIGNATURE FOR 2 AND 3 DIMENSIONS

A. 2-dimensional case

Recall we defined the function H2 : C1(C) → CN such
that

H2(τ) =

∫
τ

F(z)dz

where,

F(z) =


f1(z)
z−ζ1
f2(z)
z−ζ2

...
fN (z)
z−ζN


with fl, l = 1, 2, · · · , N being analytic functions over entire
C such that fl(ζl) 6= 0, ∀l

B. 3-dimensional case

For 3 dimensions, H3 : C1(R3)→ RM is such that

H3(τ) = [h1(τ), h2(τ), . . . , hM (τ)]T

where,

hi(τ) =

∫
τ

Bi(l) · dl

with
Bi(r) =

1

4π

∫
Si

(x− r)× dx

‖x− r‖3

II. EXTENSION TO HIGHER DIMENSIONS

Now we attempt to generalize the formulae for H-signature
to arbitrary dimension D. We provide a simplified derivation
in terms of exterior calculus and the Stokes theorem [6, 4, 5].
This analysis is reminiscent of a more general treatment that
we are currently investigating [1].

We consider the D-dimensional Euclidean space RD with
(D − 2)-dimensional compact, closed (boundaryless), locally
contractible and orientable sub-manifolds (which we call sin-
gularity manifolds), S1, S2, · · · , Sm. The singularity mani-
folds are the analogs of the “representative points” in the
2-dimensional case or the “skeletons” in the 3-dimensional
case. In the discussions that follows, we will use subscripts

1, 2, · · · , D, to denote the different components of a vector
quantity. For example, y = [y1, y2, · · · , yD]T .

Let us define the vector function,

G(y) =
1

4π

y

(y2
1 + y2

2 + · · ·+ y2
D)3/2

(1)

This is the Green’s Function in D dimensions for the Gradient
operator [2, 3], and it is a well-known result that

D∑
k=1

∂Gk
∂yk

∣∣∣
y

= δ(y) (2)

where δ(·) is the Dirac Delta Distribution in RD [2], and Gk
represent the kth component of G.

We now recall the definition of exterior derivative [6, 4]
of a differential form φ [6, 4]: d(φ) =

∑
p
∂φ
∂yp
∧ dyp. By

multiplying both sides of equation (2) with the differential D-
form, dy1 ∧ dy2 ∧ · · · ∧ dyD, and noting that dyi ∧ dyi = 0,
we can rewrite the equation as,(

∂G1
∂y1

+ ∂G2
∂y2

+ · · ·+ ∂GD
∂y3

)
dy1 ∧ dy2 ∧ · · · ∧ dyD

= δ(y) dy1 ∧ dy2 ∧ · · · ∧ dyD

⇒ d
(∑D

k=1

(
(−1)k+1Gk

∧
l 6=k dyl

)) ∣∣∣
y

= δ(y) dy1 ∧ dy2 ∧ · · · ∧ dyD
(3)

where the operator “d” at the beginning of the left land side
of the equation is the exterior derivative.

Now consider the single connected component of the sin-
gularity manifold, S, as a (D − 2)-dimensional manifold
embedded in a D-dimensional Euclidean space, RDx (the
subscript is used to denote that this is the space where the
singularity manifold is embedded). Now consider an arbitrary
2-dimensional surface, Ω, whose boundary is γ (the closed
curve along which we perform the integration: the closed loop
formed by τ1 t−τ2), embedded in a different D-dimensional
Euclidean space, RDr . A point in RDx is represented by x, while
that in RDr is represented by r (Figure 1 illustrates this for 3
dimensions).

Now consider the D-dimensional manifold created by the
Cartesian product Ω × S embedded in the 2D-dimensional
product space RDr × RDx . Let us consider the tangent space



S

Ω

C
S

Ω

C
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R3
x

R3
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Fig. 1. We imagine the current carrying conductor, S, and the integration
curve, C, to be residing in two separte R3.

at any point on this manifold. Since it is a D dimen-
sional vector space, out of the 2D differentials, {dr,dx} ≡
{dr1,dr2, · · · ,drD,dx1,dx2, · · · ,dxD}, only D can be lin-
early independent when we stay constrained in the manifold
Ω × S. Moreover, since S is itself a (D − 2) dimensional
manifold described by the coordinates x, on Ω × S out of
{dx1,dx2, · · · ,dxD}, only (D−2) can be independent. Sim-
ilarly, since Ω is 2-dimensional, out of {dr1,dr2, · · · ,drD},
only 2 can be linearly independent on Ω×S . As a consequence
of these, the following identities hold on Ω× S ,

dxi1 ∧ dxi2 ∧ · · · ∧ dxip ∧ drip+1 ∧ · · · ∧ drip+q = 0,
whenever p+ q > D, and

dxi1 ∧ dxi2 ∧ · · · ∧ dxip = 0, whenever p > D − 2, and

dri1 ∧ dri2 ∧ dri3 = 0,
dri1 ∧ dri2 ∧ dri3 ∧ dri4 = 0,
· · ·
dri1 ∧ dri2 ∧ · · · ∧ driD = 0

(4)
Setting y = r − x, we will now integrate both sides

of Equation (3) (which are differential D-forms) on the D-
dimensional manifold Ω×S. With the substitution y = r−x,
Equation (3) becomes,

d

 D∑
k=1

(−1)k+1Gk
∧
l 6=k

(drl − dxl)

 ∣∣∣∣∣∣
r−x

= δ(r− x) (dr1 − dx1) ∧ (dr2 − dx2) ∧ · · · ∧ (drD − dxD)

(5)
On Ω × S we can choose any one of the coordinate systems
among y,x or p. Now we use the property of coordinate
invariance of exterior derivative operator. That is, d(φ) =∑
p
∂φ
∂yp
∧dyp =

∑
p
∂φ
∂xp
∧dxp =

∑
p
∂φ
∂rp
∧drp. By choosing

r as our preferred coordinate, we note that most of the terms
in the left hand side of Equation (5) that contain differentials
of the form as described in Equation (4) vanish identically on
Ω×S . Using this observation, and upon some simplification,

the integration of (5) on Ω× S becomes,∫
Ω×S

d
( D∑
k=1

D∑
j=1
j 6=k

(−1)k−j−1−is(j<k)Gk(r− x)

( ∧
l 6=j,k

dxl
)
∧ drj

)
=∫

Ω×S
δ(y) dy1 ∧ dy2 ∧ · · · ∧ dyD

(6)
where, for the right-hand-side of the equation we once again
use the coordinates y = r− x, and is(cond.) is 1 if (cond.)
is true, 0 otherwise.

Now, by using the Stoke’s Theorem [6, 4],
∫

Σ
dφ =

∫
∂Σ
φ,

where ∂Σ is the boundary of the manifold Σ. However, since
the singularity manifold, S, does not have a boundary, ∂(Ω×
S) = ∂(Ω)× S = γ × S . Thus, equation (6) becomes,∫
γ

∫
S

( D∑
k=1

D∑
j=1
j 6=k

(−1)k−j−1−is(j<k)Gk(r− x)

( ∧
l 6=j,k

dxl
)
∧ drj

)
=

∫
Ω×S

δ(y) dy1 ∧ dy2 ∧ · · · ∧ dyD

=

{
±1, if Ω× S contains the point y = 0
0, otherwise.

(7)
where the content of the right-hand-side follows directly from
the property of Dirac Delta Distribution, and the sign depends
on the orientation of Ω×S. We note that the statement “Ω×S
contains the point y = 0” is equivalent to saying that there
is no intersection between Ω and S. That is, γ = ∂Ω is null-
homologous in (R− S).

Thus, for general D dimensional Euclidean configuration
space with S1, S2, · · · , SM as (D−2)-dimensional homotopy
equivalents of the obstacles such that each Si is connected
and closed (boundaryless), we define the H-signature of a
trajectory τ as,

HD(τ) =

∫
τ


ω1

ω2

...
ωM

 (8)

where, ωi are differential 1-forms defined as,

ωi(r) =

D∑
k=1

D∑
j=1
j 6=k

Ukj (r;Si) drj

with,

Ukj (r;S) = (−1)k−j−1−is(j<k)∫
S
Gk(r− x) dx1 ∧ dx2 · · · ∧ x̂j , xk ∧ · · · ∧ dxD

where, the hat over xj and xk imply that those therms are not
present in the differential.



It can be shown that this formula reduces to the formula for
H2 when we set D = 2 and reduces to formula for H3 when
we set D = 3. For a more in-depth analysis see [1].
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