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A. Recall the definition of H-signature

Definition 1 (h-Signature): Given an arbitrary trajectory,
τ , in the 3-dimensional environment with M skeletons, we
define the H-signature of τ to be the following M -vector,

H(τ) = [h1(τ), h2(τ), . . . , hM (τ)]T (1)

where, hi(τ) =

∫
τ

Bi(l) · dl (2)

is defined in an analogous manner as the integral in Ampere’s
Law. In defining hi, Bi is the Virtual Magnetic Field vector
due to the unit current through skeleton Si, l is the integration
variable that represents the coordinate of a point on τ , and dl
is an infinitesimal element on τ .

B. “Looping” and “Non-loooping” Trajectories

“Looping” of a trajectory around an obstacle (Figure 1(a))
is similar in essence to non-Jordan curves on two-dimensional
planes. However in three dimensions their precise and univer-
sal definition is more difficult. One way of identifying one of
the homotopy classes of trajectories (joining a given start and
an end coordinate) that do not loop around a skeleton Si is by
joining the start and the end coordinates using a straight line
segment (call it τ ). Then the trajectories that are homotopic to
τ form a particular homotopy class of non-looping trajectories
w.r.t. Si (for example, in Figure 1(a), the homotopy class to
which τ2, and hence τ2, belong are non-looping). However,
for more complex obstacles (like knots), the notion of a non-
looping trajectory being a straight line segment breaks down
(See Figure 1(b)). In fact the notions of looping and non-
looping is imprecise in such cases. In Section-C we show that
for the special simple case when Si is an infinitely long line,
the component of the h-signature hi(τ) for a line segment
τ lies between −1 and 1. We hence propose the following
mathematical definition of a non-looping trajectory,

Definition 2 (Non-looping trajectory w.r.t. Si): A trajec-
tory τ is said to be non-looping w.r.t. Si if hi(τ) ∈ (−1, 1).
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(a) Trajectory that loops around a
skeleton & one that doesn’t. In
this figure hi(τ1) > 1 and 0 <
hi(τ2) = hi(τ2) < 1.

τSi

(b) In the most general case, it is
difficult to precisely identify a non-
looping homotopy class.

Fig. 1.
The value is in [0, 1) if the trajectory goes around Si in
accordance with the right-hand rule with thumb pointing along
the direction of the current in Si. If the direction is opposite,
the value lies in (−1, 0].

This definition, in many cases, conform to our general
intuition of non-looping trajectories. If another trajectory, τ ′,
connecting the same start and end points as a non-looping
trajectory τ , goes on the “other side of the obstacle” without
looping around it, then τ ∪ −τ ′ forms a closed loop that
encloses Si. Then, hi(τ∪−τ ′) = ±1 = sign(hi(τ∪−τ ′)). But
since, τ and τ ∪−τ ′ goes around Si in the same orientation,
we have sign(hi(τ ∪−τ ′)) = sign(hi(τ)). Again by property
of line integration, hi(τ ∪ −τ ′) = hi(τ) − hi(τ

′). Thus,
hi(τ

′) = hi(τ) − sign(hi(τ)). Thus we have the following
definition.

Definition 3 (Complementary Homotopy Class): Given
a trajectory τ that is non-looping w.r.t. all the skeletons in
the environment (i.e. hi(τ) ∈ (−1, 1) ∀ i = 1, 2, . . . ,M ),
we define the Complementary Homotopy Class of the
homotopy class of τ to be the one for which the h-signature
is H(τ)− sign(H(τ)), where sign(·) gives the vector of signs
of the elements of its input vector.

C. Computation of H-Signature for a line segment (e.g an
Edge of G)

For all practical applications we assume that a skeleton of an
obstacle, Si, is made up of finite number (ni) of line segments:
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(a) A skeleton of an obstacle can be
constructed or approximated such
that it is made up of n line seg-
ments.
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sni−1
i sni

i ,
−−−→
sni
i s1i } (Figure 2(a)).

Thus, the integration in the Biot-Savert law can be split into
summation of ni integrations,

Bi(r) =
1

4π

ni∑
j=1

∫
−−−→
sjis

j′
i

(x− r)× dx

‖x− r‖3
(3)

where j′ ≡ 1 + (j mod ni).
One advantage of this representation of skeletons is that

for the straight line segments,
−−→
sji s

j′

i , the integration can be
computed analytically. Specifically, using a result from [1]
(also, see Figure 2(b)),∫

−−−→
sjis

j′
i

(x− r)× dx

‖x− r‖3
=

1

‖d‖
(sin(α′)− sin(α)) n̂

=
1

‖d‖2

(
d× p′

‖p′‖
− d× p

‖p‖

)
(4)

where, d,p and p′ are functions of sji , s
j′

i and r (Figure 2(b)),
and can be expressed as,

p = sji − r , p′ = sj
′

i − r ,

d =
(sj

′

i − sji )× (p× p′)

‖sj′i − sji‖2
(5)

We define and write Φ(sji , s
j′

i , r) for the RHS of Equation (4)
for notational convenience. Thus we have,

Bi(r) =
1

4π

ni∑
j=1

Φ(sji , s
j′

i , r) (6)

where, j′ ≡ 1 + (j mod ni).
Given an edge e ∈ E , we can now compute the h-signature,
H(e) = [h1(e), h2(e), . . . , hM (e)]T , where,

hi(e) =
1

4π

∫
e

ni∑
j=1

Φ(sji , s
j′

i , l) · dl (7)

can be computed numerically.
Making use of the result from Equation (4), if the current

carrying line segment stretches to infinity in both direction
(i.e. it becomes a line), we have α′ = π

2 and α = −π2 . The
virtual magnetic field due to Si at a point r becomes

Bi =
1

4π

2 n̂

‖d‖ =
1

2π

n̂

‖d‖ (8)

Note that the contribution of the closing curve at infinity
becomes zero in the above quantity.
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Fig. 3. An infinitely long skeleton and h-signature of a straight line segment.

Now consider the straight line segment trajectory τ =
rArB . Let the line containing τ (i.e. formed by extending τ
to infinity in both directions) be T (Figure 3). Consider the
shortest distance between Si and T and let it be D. Assuming
Si and T are not parallel, there is a unique point on each
of these line (p and q respectively) that are closest and are
separated by the distance D. The line segment joining the
closest points, pq, is perpendicular to both Si and T . The
main diagram of Figure 3 shows the projection of Si and T on
a plane perpendicular to pq. Note that this plane (the plane of
the paper) is parallel to both Si and T , since it is perpendicular
to pq.

We define an orthonormal coordinate system with unit
vectors î pointing along Si in the direction of the current, and
unit vector k̂ pointing along pq. Using these, and referring to
Figure 3, we now can write the following equations,

‖d‖2 = D2 + l2 sin2 φ

n̂ = cosβ k̂− sinβ ĵ , dr = (cosφ î + sinφ ĵ) dl
(9)

where, φ is a constant angle between Si and T on the plane
of the paper, cosβ = l sinφ

‖d‖ , sinβ = D
‖d‖ , and l is the length

parameter along T starting at q. Thus from (8),

Bi · dr = − 1

2π

sinβ sinφ

‖d‖ dl = − D sinφ

2π

dl

D2 + l2 sin2 φ
(10)

Thus, ∫
τ

Bi · dr = −D sinφ

2π

∫ lB

lA

dl

D2 + l2 sin2 φ

= − 1

2π

(
arctan

(
lB

D/ sinφ

)
− arctan

(
lA

D/ sinφ

))
(11)

An arctangent of a quantity, with consideration for proper
quadrants, can assume values between −π and π. Thus the
quantity within the outer brackets of Equation (11), that is
the difference of two arctangents, can assume values between
−2π and 2π. Thus the integral

∫
τ

Bi · dr, can assume values
between −1 and 1. Thus, as claimed in Section -B, a straight
line segment trajectory indeed has the value of hi(τ) in (−1, 1)
for this simple case of infinitely long line Si.
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